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1 Three Problems

Problem 1. Assume ai, bi, ci, i = 1, 2, 3 are real numbers. Prove that

√
(a1 + b1 + c1)2 + (a2 + b2 + c2)2 + (a3 + b3 + c3)2 ≤

√
a2

1 + b2
1 + c2

1+
√

a2
2 + b2

2 + c2
2+

√
a2

3 + b2
3 + c2

3.

Problem 2. Assume ai, bi, ci, i = 1, 2, 3 are positive numbers. Prove that

3
√

a1b1c1 + 3
√

a2b2c2 + 3
√

a3b3c3 ≤ 3
√

(a1 + a2 + a3)(b1 + b2 + b3)(c1 + c2 + c3),

with equality iff
a1

b1

=
a2

b2

=
a3

b3

.

Problem 3. Assume ai, bi, ci, i = 1, 2, 3 are positive numbers. Prove that

1
1
a1

+ 1
b1

+ 1
c1

+
1

1
a2

+ 1
b2

+ 1
c2

+
1

1
a3

+ 1
b3

+ 1
c3

≤ 1
1

a1+a2+a3
+ 1

b1+b2+b3
+ 1

c1+c2+c3

,

with equality iff
a1

b1

=
a2

b2

=
a3

b3

.

2 A basic inequality

Theorem 1. Suppose a, b > 0. Then

2
√

ab ≤ ta +
b

t
, ∀t > 0,
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with equality iff

t =

√
b

a
.

In other words,

2
√

ab = min{ta +
b

t
: t > 0} = min{sa + bt : s, t > 0, st = 1}.

Proof.

ta +
b

t
− 2

√
ab =

at2 − 2t
√

ab + b

t
=

(t
√

a−
√

b)2

t
.

We deduce some consequences.

Theorem 2. If a, b, c, d > 0. Then√
ab +

√
cd ≤

√
(a + c)(b + d),

with equality iff
a

c
=

b

d
.

Proof. For all t > 0,

2[
√

ab +
√

cd] ≤ at +
b

t
+ ct +

d

t
= (a + c)t +

(b + d)

t
,

with equality iff

t =

√
b

a
=

√
d

c
=

√
b + d

a + c
.

Hence

2[
√

ab +
√

cd] ≤ min{(a + c)t +
(b + d)

t
: t > 0} = 2

√
(a + c)(b + d).

We can build on this in two ways.

Theorem 3. Suppose a, b, c, d, e, f, g, h > 0. Then
4
√

abcd + 4
√

efgh ≤ 4
√

(a + e)(b + f)(c + g)(d + h),

with equality iff
a

e
=

b

f
=

c

g
=

d

h
.

Proof. Put x =
√

ab, y =
√

cd, u =
√

ef, v =
√

gh. Then
4
√

abcd + 4
√

efgh =
√

xy +
√

uv

≤
√

(x + u)(y + v)

=

√
(
√

ab +
√

ef)(
√

cd +
√

gh)

≤
√√

(a + e)(b + f)
√

c + g)(d + h)

= 4
√

(a + e)(b + f)(c + g)(d + h).

We can now deduce the following statement.
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Corollary 1. If a, b, c, e, f, g > 0, then

3
√

abc + 3
√

efg ≤ 3
√

(a + e)(b + f)(c + g),

with equality iff
a

e
=

b

f
=

c

g
.

Proof. Let d = 3
√

abc, h = 3
√

efg and apply the theorem.

d + h =
4
√

abcd + 4
√

efgh

≤ 4
√

(a + e)(b + f)(c + g)(d + h),

whence
3
√

abc + 3
√

efg = d + h ≤ 3
√

(a + e)(b + f)(c + g).

A solution of Problem 2 follows.

Exercise 1. Prove the last statement.

Exercise 2. Suppose ai, bi > 0, i = 1, 2, . . . , n. Prove that

n
√

a1a2 · · · an + n
√

b1b2 · · · bn ≤ n
√

(a1 + b1)(a2 + b2) · · · (an + bn),

with equality iff
a1

b1

=
a2

b2

= · · · = an

bn

.

3 The Cauchy-Schwartz inequality

Theorem 2 is a special case of a disguised version of one form of perhaps the most
useful inequality in all of Mathematics, namely the Cauchy-Schwartz inequality.

Theorem 4 (Cauchy-Schwartz). If xi, yi > 0, i = 1, 2, . . . , n, then

n∑
i=1

√
xiyi ≤

√√√√(
n∑

i=1

xi)(
n∑

i=1

yi),

with equality iff
x1

y1

=
x2

y2

= · · · = xn

yn

.

Proof. Invoke Theorem 2 and use induction. We can phrase this differently.

Corollary 2. If ai, i = 1, 2, . . . , n are real numbers, then
√√√√

n∑
i=1

a2
i = max{|

n∑
i=1

aixi| :
n∑

i=1

x2
i = 1}.
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Proof. For, if
∑n

i=1 x2
i = 1, then

|
n∑

i=1

aixi| ≤
n∑

i=1

|ai| |xi|

=
n∑

i=1

√
(ai)2(xi)2

≤
√√√√(

n∑
i=1

a2
i )(

n∑
i=1

x2
i )

=

√√√√
n∑

i=1

a2
i ,

and there is equality when

xi =
ai√∑n
i=1 a2

i

, i = 1, 2, . . . , n.

Theorem 5. If a, b, c, d are real numbers, then
√

(a + b)2 + (c + d)2 ≤
√

a2 + c2 +
√

b2 + d2.

Proof. Suppose x2 + y2 = 1. Then

|ax + cy| ≤
√

a2 + c2, |bx + dy| ≤
√

b2 + d2.

Hence

|(a + b)x + (c + d)y| ≤ |ax + cy|+ |bx + dy| ≤
√

a2 + c2 +
√

b2 + d2.

It follows that
√

(a + b)2 + (c + d)2 = max{|(a+b)x+(c+d)y| : x2+y2 = 1} ≤
√

a2 + c2+
√

b2 + d2.

This is a special case of Minkowski’s inequality.

Theorem 6 (Minkowski). Assume ai, bi, i = 1, 2, 3 are real numbers. Then
√√√√

n∑
i=1

(ai + bi)2 ≤
√√√√

n∑
i=1

a2
i +

√√√√
n∑

i=1

b2
i .

Proof. Suppose
∑n

i=1 x2
i = 1. Then

√√√√
n∑

i=1

a2
i +

√√√√
n∑

i=1

b2
i ≥ |

n∑
i=1

aixi|+ |
n∑

i=1

bixi|

≥ |
n∑

i=1

(ai + bi)xi|.
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Hence√√√√
n∑

i=1

(ai + bi)2 = max{|
n∑

i=1

(ai + bi)xi| :
n∑

i=1

x2
i = 1} ≤

√√√√
n∑

i=1

a2
i +

√√√√
n∑

i=1

b2
i .

4 Discussion of Theorem 2

The product ab represents the area of a rectangle A with dimensions a, b, and cd is
the area of a rectangle B with dimensions c, d. And a + c, b + d are the dimensions
of a rectangle C—the ‘sum’ of A,B. Thus

√
area(A) +

√
area(B) ≤

√
area(C),

with equality iff A, B, C are scaled versions of each other.

Exercise 3. Give a geometric interpretation of Problem 2.

We can cast the previous statement in a different way. With each point (vector)
x = (x1, x2) is the first quadrant of R2, let

g2(x) =
√

x1x2.

Then, if y = (y1, y2),
g2(x) + g2(y) ≤ g2(x + y).

Thus g2 is super-additive on R2.
Notice, too, that, for every scalar λ > 0, λx = (λx1, λx2) and

g2(λx) = λg2(x), ∀x ∈ R2,

i.e., g2 is homogeneous of degree 1. Hence, g2 is concave on R2. Analytically, this
means that ∀x, y ∈ R2, and 0 ≤ λ ≤ 1, then

λg2(x) + (1− λ)g2(y) ≤ g2(λx + (1− λ)y).

To get an idea of what it means, geometrically, try and picture the surface in 3-space
whose equation is

z =
√

xy, x, y ≥ 0.

Exercise 4. Apropos Problem 2, draw a similar conclusion about the function

g3(x) = 3
√

x1x2x3, x = (x1, x2, x3) ∈ R3, xi ≥ 0, i = 1, 2, 3.

In fact, if x = (x1, x2, . . . , xn) is a vector in n-space and its coordinates are positive,
and

gn(x) = n
√

x1x2 · · · xn,

then gn is super-additive and is homogeneous of degree 1 on

{x ∈ Rn : xi ≥ 0, i = 1, 2, . . . , n}.
Hence, gn is concave on this region.
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5 Discussion of Theorem 5

It’s familiar that
√

a2 + b2 is the euclidean distance from the origin to the point
(a, b) in R2. Thus Theorem 5 is simply an analytical statement equivalent to the
triangle inequality! To put this another way, let

`2(x) =
√

x2
1 + x2

2, x = (x1, x2) ∈ R2,

then
`2(x + y) ≤ `2(x) + `2(y), ∀x, y ∈ R2.

In other words, `2 is sub-additive. But it’s also homogeneous of degree one. Hence,
it is convex on R2, i.e., ∀x, y ∈ R2, and 0 ≤ λ ≤ 1, then

`2(λx + (1− λ)y) ≤ λ`2(x) + (1− λ)`2(y).

To get an idea of what this means, geometrically, try and picture the region of points
(x, y, z) in 3-space constrained by the conditions

0 ≤ z ≤
√

x2 + y2, x, y ∈ R.

[Hint: at your next meal examine the sugar bowl, say.]
A solution of Problem 1 follows once we can show that

`3(x) =
√

x2
1 + x2

2 + x2
3, x = (x1, x2, .x3) ∈ R3,

has the same property.

Exercise 5. Establish that `3 is sub-additive and convex on R3, and solve Problem
1.

6 Solution of Problem 3

By now it will have occurred to you that what is wanted to solve Problem 3 is an
analogue of Corollary 1 for the harmonic mean of three positive numbers. (This has
properties similar to the geometric mean, but doesn’t get as much attention, and
doesn’t feature in too many IMO problems.) Namely, we want to show that the
function h3 defined by

h3(x) =
3

1
x1

+ 1
x2

+ 1
x3

, x = (x1, x2, x3) ∈ R3, x1, x2, x3 > 0

is super-additive, and so concave, on R3.

Theorem 7. If a, b, c > 0, then

1
1
a

+ 1
b
+ 1

c

= min{ax + by + cz : 0 < x, y, z,
√

x +
√

y +
√

z = 1}.
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Proof. This is a consequence of Theorem 4. For, if x, y, z > 0 and
√

x+
√

y+
√

z = 1,
then

1 = (
√

ax
1√
a

+
√

by
1√
b

+
√

cz
1√
c
)2 ≤ (ax + by + cz)(

1

a
+

1

b
+

1

c
).

Hence,
1

1
a

+ 1
b
+ 1

c

≤ ax + by + cz,

whenever 0 < x, y, z,
√

x +
√

y +
√

z = 1, and there is equality here when

x =
1

a2( 1
a

+ 1
b
+ 1

c
)2

, y =
1

b2( 1
a

+ 1
b
+ 1

c
)2

, z =
1

c2( 1
a

+ 1
b
+ 1

c
)2

.

Corollary 3. If a, b, c, d, e, f > 0, then

h3(a, b, c) + h3(d, e, f) ≤ h3(a + d, b + e, c + f).

There is equality iff
a

d
=

b

e
=

c

f
.

Proof. For, if x, y, z > 0 and
√

x +
√

y +
√

z = 1, then

h3(a, b, c)+h3(d, e, f) ≤ 3(ax+by+cz)+3(dx+ey+fz) = 3[(a+d)x+(b+e)y+(c+f)z],

and so h3(a, b, c) + h3(d, e, f) doesn’t exceed

3 min{(a+d)x+(b+e)y+(c+f)z : 0 < x, y, z,
√

x+
√

y+
√

z = 1} = h3(a+d, b+e, c+f).

Moreover, (?) there is equality here iff

√
x =

1

a( 1
a

+ 1
b
+ 1

c
)

=
1

d(1
d

+ 1
e

+ 1
f
)

=
1

(a + d)( 1
a+d

+ 1
b+e

+ 1
c+f

)
,

√
y =

1

b( 1
a

+ 1
b
+ 1

c
)

=
1

e(1
d

+ 1
e

+ 1
f
)

=
1

(b + e)( 1
a+d

+ 1
b+e

+ 1
c+f

)
,

and √
z =

1

c( 1
a

+ 1
b
+ 1

c
)

=
1

f(1
d

+ 1
e

+ 1
f
)

=
1

(c + f)( 1
a+d

+ 1
b+e

+ 1
c+f

)
.

In other words, (?) iff
a

d
=

b

e
=

c

f
.

Exercise 6. Now solve Problem 3.
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7 Exercises

1. Suppose a, b > 0. Prove that

a + g2(a, b)

2
≤ g2(a,

a + b

2
),

with equality iff a = b.

2. State and prove an analogue of Theorem 7 and its corollary for h2, where

h2(x) =
2

1
x1

+ 1
x2

, x = (x1, x2) ∈ R2, xi, x2 > 0.

3. Suppose a, b > 0. Prove that

a + h2(a, b)

2
≤ h2(a,

a + b

2
),

with equality iff a = b.

4. Suppose a, b, c > 0. Prove that

g2(a, b) + g2(b, c) + g2(c, a) ≤ a + b + c,

with equality iff a = b = c.

5. Suppose a, b, c > 0. Prove that

h2(a, b) + h2(b, c) + h2(c, a) ≤ a + b + c,

with equality iff a = b = c.

6. Suppose a, b, c > 0. Prove that

3
3
√

abc = min{ax + by + cz : 0 < x, y, z, xyz = 1}.

Deduce Corollary 1.

7. More generally, if xi ≥ 0, i = 1, 2, . . . , n, x = (x1, x2, . . . , xn), and

gn(x) = n
√

x1x2 · · · xn.

Prove that

ngn(x) = min{
n∑

i=1

xiyi : y1y2 · · · yn = 1, yi > 0, i = 1, 2 . . . , n}.

Now redo Exercise 2 in Section 2.
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8. Suppose a, b, c > 0. Prove that

a + g2(a, b) + g3(a, b, c) ≤ 3g3(a,
a + b

2
,
a + b + c

3
),

with equality iff a = b = c.

9. Suppose a, b, c > 0. Prove that

a + h2(a, b) + h3(a, b, c) ≤ 3h3(a,
a + b

2
,
a + b + c

3
),

with equality iff a = b = c.

10. Suppose a, b, c, d > 0. Prove that

ab

a + b + 1
+

cd

c + d + 1
<

(a + c)(b + d)

a + b + c + d + 1
.

11. Suppose a, b, c > 0. Prove that

g2(a, b) + g2(b, c) + g2(c, a) ≤ 3g3(
a + b

2
,
b + c

2
,
c + a

2
) ≤ a + b + c,

with equality iff a = b = c.

12. Suppose a, b, c > 0. Prove that

h2(a, b) + h2(b, c) + h2(c, a) ≤ 3h3(
a + b

2
,
b + c

2
,
c + a

2
) ≤ a + b + c,

with equality iff a = b = c.
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