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1 Basic inequalities

R = (−∞,∞) = (−∞, 0) ∪ {0} ∪ (0,∞).

Here
(−∞, 0) = {x ∈ R : x < 0}, (0,∞) = {x ∈ R : x > 0}.

Law of Trichotomy: Every x ∈ R is either positive, i.e., x > 0; (ii) zero, i.e., x = 0,
or (iii) negative, i.e., x < 0.
N.B. If a, b > 0, then a + b > 0 and ab > 0. If a, b < 0, then a + b < 0 and ab > 0.
We write a ≥ b to mean that either a− b > 0 or a = b.

Lemma 1. Suppose A ≥ C > 0, B ≥ D > 0. Then

AB ≥ CD,

with equality iff A = C and B = D.

Proof. Since
AB − CD = (A− C)B + (B −D)C,

A−C ≥ 0 and B ≥ 0, the first term on the RHS is ≥ 0. Also, B−D ≥ 0 and C ≥ 0.
Hence the second term is also ≥ 0. Since the sum of two nonnegative numbers is
nonnegative, the inequality follows. If the equality holds, then

(A− C)B = (B −D)C = 0.

But B,C are positive numbers. Hence A = C and B = D.

Theorem 1. If x ∈ R, then x2 ≥ 0. In fact, x2 > 0 unless x = 0.
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The graph of the square function x → x2 is a parabola that is symmetric about
the vertical axis. The graph is strictly decreasing on (−∞, 0), takes its least value
at x = 0 and is strictly increasing on (0,∞). The graph is convex, i.e., the arc
joining any two points on it lies below the chord joining the points. The region
{(x, y) : y > x2} has the property that the line segment connecting any two of its
points is wholly contained in it.
Here’s a proof of the convexity property of the square function. Let A = (a, a2) and
B = (b, b2) be any two points on the graph of y = x2. The equation of the line
through A, B is given by

y = a2 =
b2 − a2

b− a
(x− a) = (a + b)(x− a).

Thus, a point (x, y) lies on the chord joining A and B provided a ≤ x ≤ b and

y = (a + b)(x− a) + a2.

This chord lies above the arc of the parabola connecting A and B provided

x2 ≤ (a + b)(x− a) + a2,

whenever a ≤ x ≤ b. Now

x2 ≤ (a + b)(x− a) + a2

⇔ 0 ≤ (a + b)(x− a) + a2 − x2

⇔ 0 ≤ (x− a)(a + b− x− a)

⇔ 0 ≤ (x− a)(b− x)

⇔ a ≤ x ≤ b.

Note too that the parabola {(x, x2) : x ∈ R} is the set of points that are equidistant
from the fixed point (0, 1/4) and the fixed line L = {(x, y); y = −1/4}. Indeed, If
P = (x, y) is any point, then its distance from (0, 1/4) is given by

√
(x2 + (y − 1

4
)2 =

√
x2 + y2 − y

2
+

1

16
,

while its distance from L is given by |y + 1/4|. Hence P is equidistant from (0, 1/4)
and L iff

√
x2 + y2 − y

2
+

1

16
= |y +

1

4
|, ⇔ x2 + y2 − y

2
+

1

16
= y2 +

y

2
+

1

16
, ⇔ y = x2.

The parabola is one of the conics, whose properties were uncovered by the ancient
Greeks.

Theorem 2. Suppose x ≥ 0. Then there is a unique y ≥ 0 so that

y2 = x.

The unique solution is denoted by
√

x.
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The square-root function x → √
x has the following properties.

1. Its domain of definition is [0,∞). Its range is the same set.

2. It is strictly increasing, i.e., 0 ≤ a < b implies that
√

a <
√

b.

3. It is multiplicative, i.e., if a, b ∈ [0,∞), then

√
ab =

√
a
√

b.

4. It is sub-additive, ie., if a, b ∈ [0,∞), then

√
a + b ≤ √

a +
√

b.

5. It is concave on its domain, i.e., if a, b ∈ [0,∞) and a ≤ x ≤ b, then

√
a +

√
b−√a

b− a
(x− a) ≤ √

x.

2 AM-GM inequality

If a, b > 0, then

AM(a, b) =
a + b

2
, GM(a, b) =

√
ab,

are the Arithmetic Mean and Geometric Mean of the two numbers a, b, respectively.

Theorem 3. If a, b > 0, then

GM(a, b) ≤ AM(a, b),

with equality iff a = b.

Proof. The statement we want to prove is equivalent to the assertion that

√
ab ≤ a + b

2

⇔ 0 ≤ a− 2
√

ab + b

⇔ 0 ≤ (
√

a−
√

b)62,

which holds because
√

a−
√

b ∈ R.

Example. If a, b, c > 0, then

8abc ≤ (a + b)(b + c)(c + a),

with equality iff a = b = c.
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Solution. We have

2
√

ab ≤ a + b, 2
√

bc ≤ b + c, 2
√

ca ≤ c + a,

and so
8abc = (2

√
ab)(2

√
bc)(2

√
ca) ≤ (a + b)(b + c)(c + a).

Clearly, equality holds if a = b = c. Suppose equality holds, so that

(2
√

ab)(2
√

bc)(2
√

ca) ≤ (a + b)(b + c)(c + a).

Apply the lemma, taking

A = a + b, C =
√

ab, B = (b + c)(c + a), D = (2
√

bc)(2
√

ca).

Since the conditions of the lemma are satisfied, it follows that A = C and B = D.
Thus, by the previous theorem, a = b. Together with B = D, this forces (c + a)2 =
4ca, whence c = a.

Example.

x +
1

x
≥ 2, ∀x > 0,

with equality iff x = 1.

Solution. Apply the theorem with a = x, b = 1/x.
Note that the graph

{(x, y) : y = x +
1

x
, x > 0}

is convex. Indeed, if a, b > 0, the equation of the chord joining A = (a, a + 1
a
) and

B = (b, b + 1
b
) is given by

y = a +
1

a
+

b + 1
b
− a− 1

a

b− a
(x− a) = a +

1

a
+ (1− 1

ab
)(x− a), a ≤ x ≤ b.

Hence the chord lies above the arc of the graph connecting A and B iff whenever
a ≤ x ≤ b, then

x +
1

x
≤ a +

1

a
+ (1− 1

ab
)(x− a).

Equivalently, iff

0 ≤ (a− x) + (
1

a
− 1

x
) + (1− 1

ab
)(x− a)

⇔
0 ≤ (x− a)[−1 +

1

ax
+ 1− 1

ab
]

⇔
0 ≤ (x− a)

(
b− x

axb

)

⇔
0 ≤ (x− a)(b− x)

axb
,

i.e., iff a ≤ x ≤ b.
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Example. If x, y ∈ R, then
2xy ≤ x2 + y2

with equality iff x = y.

Example. If a, b, c ∈ R, then

ab + bc + ca ≤ a2 + b2 + c2,

with equality iff a = b = c.

Proof. This follows from the identity

2ab + 2bc + 2ca− 2a2 − 2b2 − 2c2 = (a− b)2 + (b− c)2 + (c− a)2.

Theorem 4. If a, b, c, d > 0, then

GM(a, b, c, d) =
4
√

abcd ≤ a + b + c + d

4
= AM(a, b, c, d),

with equality iff a = b = c = d.

Proof. Let x =
√

ab, y =
√

cd. Then x, y > 0 and so

4
√

abcd =
√

xy

≤ x + y

2

=

√
ab +

√
cd

2

≤
a+b
2

+ c+d
2

2

=
a + b + c + d

4
.

Hence the inequality holds. On the other hand, if equality holds throughout in this
chain of inequalities, then x = y, a = b and c = d. Hence a = b = c = d. Trivially,
there is equality when a = b = c = d. Hence the theorem is proved.

Theorem 5. If a, b, c > 0, then

GM(a, b, c) =
3
√

abc ≤ a + b + c

3
= AM(a, b, c),

with equality iff a = b = c.

Proof. Introduce the dummy variable d = AM(a, b, c). Then (?) AM(a, b, c, d) = d
and by the previous theorem,

4
√

abcd = GM(a, b, c, d) ≤ AM(a, b, c, d) = d, (abcd)1/4 ≤ d, abcd ≤ d4,
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i.e., abc ≤ d3, or 3
√

abc ≤ d. In other words,

GM(a, b, c) ≤ AM(a, b, c).

Moreover, there is equality iff

a = b = c = d =
a + b + c

3
,

i.e., a = b = c.
Study the strategy used in the last two theorems. Use it to extend the result of
Theorem 4 to prove that

GM(a1, a2, . . . , a8) ≤ AM(a1, a2, . . . , a8),

with equality iff a1 = a2 = · · · = a8. Now repeatedly employ the tactic used in
Theorem 5 to prove that, if 5 ≤ i ≤ 7, then

GM(a1, a2, . . . , ai) ≤ AM(a1, a2, . . . , ai),

with equality iff a1 = a2 = · · · = ai.

Exercise. Suppose 0 < x, y < π. Prove that

√
sin x sin y ≤ sin x + sin y

2
≤ sin

x + y

2
,

with equality iff x = y.

Exercise. Suppose 0 < x, y, z < π. Prove that

3
√

sin x sin y sin z ≤ sin x + sin y + sin z

3
≤ sin

x + y + z

3
,

with equality iff x = y = z.

Exercise. Suppose ABC is a triangle. Prove that

sin A + sin B + sin C ≤ 3
√

3

2
,

with equality iff ABC is equilateral.

Exercise. Suppose ABC is a triangle. Prove that

sin A sin B sin C ≤ 3
√

3

8
,

with equality iff ABC is equilateral.

Exercise. Suppose ABCD is a quadrilateral. Prove that

sin A + sin B + sin C + sin D ≤ 4,

with equality iff ABCD is a rectangle.
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3 Geometric inequalities

Given two rectangles, A,B with dimensions a, b, and c, d, respectively, form the
rectangle C with dimensions a + c, b + d. How is the area of C related to those of
A, B?
Since

(a + c)(b + d) = ab + cd + (ad + bc) > ab + cd

it is clear that the area of C is bigger than the sum of the areas of A and B. Can
we improve on this?
Denote by ∆(S) the area of a region S.

Theorem 6. √
∆(C) ≥

√
∆(A) +

√
∆(B),

with equality iff A,B are proportional.

Proof. The claim is that, if a, b, c, d > 0, then

√
ab +

√
cd ≤

√
(a + c)(b + d),

with equality iff
a

b
=

c

d
.

Squaring both sides the desired result follows if

ab + 2
√

abcd + cd ≤ ab + cd + ad + bc, 2
√

(ad)(bc) ≤ ad + bc.

The latter holds by Theorem 3, with equality iff ad = bc, i.e.,a/b = c/d. Thus our
claim is true.
Alternatively, we can proceed as follows. We can rewrite the stated result in the
form √

a

a + c

b

b + d
+

√
c

a + c

d

b + d
≤ 1.

And,

√
a

a + c

b

b + d
+

√
c

a + c

d

b + d
≤

a
a+c

+ b
b+d

2
+

c
a+c

+ d
b+d

2

=
a

a+c
+ c

a+c
+ b

b+d
+ b

b+d

2

=
1 + 1

2
= 1,

with equality iff
a

a + c
=

b

b + d
,

c

a + c
=

d

b + d
,
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i.e.,
a

b
=

a + c

b + d
=

c

d
.

Build on this to establish the following exercises.

Exercise. Suppose a, b, c, d, e, f > 0. Prove that
√

ab +
√

cd +
√

ef ≤
√

(a + c + e)(b + d + f),

with equality iff
a

b
=

c

d
=

e

f
.

Exercise. Suppose a, b, c, x, y, z are real numbers. Prove that

|ax + by + cz| ≤
√

a2 + b2 + c2
√

x2 + y2 + z2.

Can you determine the cases of equality?

Exercise. Suppose a, b, c, d, e, f > 0. Prove that
3
√

abc + 3
√

def ≤ 3
√

(a + d)(b + e)(c + f),

with equality iff
a

d
=

b

e
=

c

f
.

Exercise. Suppose a, b, c, d, e, f, g, h > 0. Prove that
4
√

abcd + 4
√

efgh ≤ 4
√

(a + e)(b + f)(c + g)(d + h),

with equality iff
a

e
=

b

f
=

c

g
=

d

h
.

4 Heron’s formula

Is there a result corresponding to Theorem 6 for triangles? Recall that three positive
numbers a, b, c are the side lengths of a triangle iff any one is less than the sum of
the other two:

a < b + c, b < c + a, c < a + b.

There are a number of equivalent ways of stating this. One is the requirement that

|a− b| < c < a + b.

Introducing the symbol s by

s =
a + b + c

2
,

a, b, c are the side lengths of a triangle ABC iff

max(a, b, c) < s.

If this is satisfied, s is the semi-perimeter of ABC.
Two other ways are given in the next two theorems,
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Theorem 7. Three positive numbers a, b, c are the side lengths of a triangle iff

(a + b− c)(b + c− a)(c + a− b) > 0.

Proof. Since the product of three positive numbers is positive, the displayed in-
equality holds if a, b, c are the side lengths of a triangle.
Conversely, if the displayed inequality holds, then either all the factors are positive,
in which case we’re done, or at most two of the factors are negative. Suppose the
latter happens and suppose, for definiteness, that a + b − c < 0 and b + c − a < 0.
Then, by addition, a + 2b + c < a + c, i.e., b < 0, which is false. So, each factor is
positive, after all.

Theorem 8. Three positive numbers a, b, c are the side lengths of a triangle iff

a4 + b4 + c4 < 2(a2b2 + b2c2 + c2a2).

Proof. By the previous theorem, a, b, c are the side lengths of a triangle iff

0 < (a + b + c)(a + b− c)(b + c− a)(c + a− b)

⇔
0 < ((a + b)2 − c2)(c2 − (a− b)2)

⇔
0 < (a + b)2c2 − (a + b)2(a− b)2 + c2(a− b)2 − c4

⇔
0 < −(a2 − b2)2 + c2((a + b)2 + (a− b)2)− c4

⇔
0 < −a4 + 2a2b2 − b4 + c2(2a2 + 2b2)− c4

⇔
0 < 2(a2b2 + b2c2 + c2a2)− a4 − b4 − c4,

whence the result.

Exercise. Suppose a, b, c are the side lengths of a triangle. Prove that

a2|b2 + c2 − a2|, b2|c2 + a2 − b2|, c2|a2 + b2 − c2|

are the side lengths of another triangle.

Exercise. Suppose a, b, c are the side lengths of a triangle. Prove that

√
2(b2 + c2)− a2,

√
2(c2 + a2)− b2,

√
2(a2 + b2)− c2

are the side lengths of another triangle.
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Exercise. Suppose a, b, c, d are positive numbers such that

a + b + c > d, b + c + d > a, c + d + a > b, d + a + b > c.

Prove that

b, c,

√
(ac + bd)(ab + cd)

(bc + ad)
,

are the side lengths of a triangle.

Theorem 9 (Heron, 1st c). Suppose a, b, c are the side lengths of a triangle. Then
its area is given by

∆ =
√

s(s− a)(s− b)(s− c).

Proof. Denote by ABC the triangle with side lengths |BC| = a, |CA| = b, |AB| = c.
Then

∆ =
1

2
ab sin C.

Hence, by the Cosine Rule,

16∆2 = a42b2(1− cos2 C)

= 4a2b2(1− cos C)(1 + cos C)

= (2ab− (a2 + b2 − c2)(2ab + (a2 + b2 − c2)

= (c2 − (a2 − 2ab + b2))((a2 + 2ab + b2)− c2)

= (c2 − (a− b)2)((a + b)2 − c2)

= (c + (a− b))(c− (a− b))((a + b) + c)((a + b)− c)

= (c + a− b)(c + b− a)(a + b + c)(a + b− c)

= (2s− 2b)(2s− 2a)(2s)(2s− 2c)

= 16s(s− a)(s− b)(s− c),

whence the result.

Exercise. Suppose that ∆ is the area of a triangle with side lengths a, b, c. Prove
that

∆ =
1

4

√
2(a2b2 + b2c2 + c2a2)− a4 − b4 − c4.

Exercise. Let a, b, c be the side lengths of a triangle with area ∆, and let a′, b′, c′ be
the side lengths of a triangle with area ∆′. Show that a+ a′, b + b′, c + c′ are the side
lengths of a triangle. Denoting the area of this by ∆′′ prove that

√
∆ +

√
∆′ ≤

√
∆′′,

with equality iff the triangles are congruent.
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Exercise (Bramahgupta, 6th c). Let p, q, r be positive numbers such that pg > r2.
Prove that the numbers

p(q2 + r2), q(p2 + r2), (p + q)(pq − r2)

are the side lengths of a triangle whose area is

pqr(p + q)(pq − r2).

Note that if p, q, r are positive integers then the side lengths and the area of the
triangle are also positive integers.

5 Some trigonometrical formulae

Following on from the last section, and keeping the same notation,

∆ =
1

2
ab sin C =

1

2
bc sin A =

1

2
ca sin B,

whence
2∆

abc
=

sin A

a
=

sin B

b
=

sin C

c
.

This is the Sine Rule.
Moreover,

8∆3 = a2b2c2 sin A sin B sin C.

Exercise. Deduce that

1.

∆ ≤
√

3
3
√

a2b2c2

4
,

with equality iff ABC is equilateral.

2.

∆ ≤ a2 + b2 + c2

4
√

3
,

with equality iff ABC is equilateral.

3.

∆ ≤ s2

3
√

3
,

with equality iff ABC is equilateral.

The third part of this exercise is an example of an iso-perimetric result, which we
state as
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Theorem 10. Among all triangles having the same perimeter, the equilateral trian-
gle has the greatest area. Equivalently, among all triangles with the same area, the
equilateral triangle has the smallest perimeter.

Proof. Consider the class of all triangles ABC with the same perimeter L. If a, b, c
are the side lengths of one of them, then its area is given by

∆ =
√

s(s− a)(s− b)(s− c),

where 2s = a + b + c = L. Hence

∆2

s
= (s− a)(s− b)(s− c)

= (GM(s− a, s− b, s− c))3

≤ (AM(s− a, s− b, s− c))3

=

(
(s− a) + (s− b) + (s− c)

3

)3

= (
s

3
)3,

with equality iff

s− a = s− b = s− c, a = b = c =
L

3
.

Thus,
∆2

s
≤ s3

27
, ∆ ≤ L2

12
√

3
,

with equality holding throughout only when ABC is equilateral of side length L/3.

Exercise. Suppose a, b, c are the side lengths of a triangle. Show that (a+b)/2, (a+
b)/2, c are the side lengths of a triangle having the same perimeter, but a bigger area.

Also, we have the Cosine Rule, which we’ve already applied to derive Heron’s for-
mula. This tells us that

cos A =
b2 + c2 − a2

2bc
,

with similar expressions for cos B, cos C obtained from this by permuting the sym-
bols a, b, c.
Note that

2 sin2 A

2
= 1− cos A

=
2bc− (b2 + c2 − a2)

2bc

=
a2 − (b− c)2

2bc

=
a− (b− c))(a + (b− c)

2bc
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=
(a + c− b)(a + b− c)

2bc

=
2s− 2c)(2s− 2b)

2bc

=
2(s− b)(s− c)

bc
.

Hence

sin
A

2
=

√
(s− b)(s− c)

bc
.

Similarly,

cos
A

2
=

√
s(s− a)

bc
,

and so

tan
A

2
=

√
(s− b)(s− c)

s(s− a)
.

6 Quadrilaterals

Four positive numbers a, b, c, d form a quadrilateral with these as side lengths iff

2σ ≡ a + b + c + d > 2 max(a, b, c, d).

How come? Let ABCD be a quadrilateral with side lengths given by

a = |BC|, b = |CD|, c = |DA|, d = |AB|.

Let x, y denote the lengths of the ’diagonals’ AC and BD: x = |AC|, y = |BD|.
There are infinitely many such quadrilaterals. (Imagine that ABCD is a flexible
frame hinged at A,B,C,D.) Which of them has the largest area? A little thought
shows that to answer this question we can confine our attention to those that are
convex.

Theorem 11. Consider the class of all convex quadrilaterals ABCD whose side
lengths are given by the fixed numbers a = |BC|, b = |CD|, c = |DA|, d = |AB|.
The one with the largest area is cyclic, and its area is

√
(σ − a)(σ − b)(σ − c)(σ − d).

Proof. Let x = |AC|. By Heron’s formula,

∆(ABC) =
1

4

√
((a + d)2 − x2)(x2 − (a− d)2),

and

∆(CDA) =
1

4

√
((b + c)2 − x2)(x2 − (b− c)2).
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Also,
ABCD = ABC ∪ CDA

and
ABC ∩ CDA = AC,

which has zero area. Hence, we see that

∆(ABCD) = ∆(ABC) + ∆(CDA)

=
1

4

√
(a + d)2 − x2)(x2 − (a− d)2 +

1

4

√
((b + c)2 − x2)(x2 − (b− c)2)

=
1

4
[
√

(a + d)2 − x2)(x2 − (a− d)2 +
√

((b + c)2 − x2)(x2 − (b− c)2)],

where x, being a side length of the triangles ABC and CDA, satisfies two sets of
inequalities

|a− d| ≤ x ≤ a + d, |b− c| ≤ x ≤ |b + c,

i.e.,
α = max(|a− d|, |b− c|) ≤ x ≤ min(a + d, b + c) = β.

What value of x maximizes the area of ABCD? Anticipating some algebraic ma-
nipulations, introduce the variables

p = (a + d)2, q = (a− d)2, r = (b + c)2, s = (b− c)2

and let t = x2. The quantity we want to maximize is now

√
(p− t)(t− q) +

√
(r − t)(t− s),

where α2 ≤ t ≤ β2. To handle this we appeal to the fact that

√
ab +

√
cd ≤

√
(a + c)(b + d),

with equality iff
a

b
=

c

d
,

a result we established to prove Theorem 6. We employ this with

a = p− t, b = t− q, c = t− s, d = r − t,

giving us that

√
(p− t)(t− q)+

√
(r − t)(t− s) ≤

√
(p− t + t− s)(t− q + r − t) =

√
(p− s)(r − q),

with equality iff

p− t

t− q
=

t− s

r − t
, ⇔ (p− t)(r − t) = (t− q)(t− s),
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i.e.,

pr − t(r + p) + t2 = t2 − t(s + q) + sq, ⇔ t =
pr − sq

r + p− s− q
.

In terms of the a, b, c, d the condition for equality is that

x2 =
pr − sq

r + p− s− q

=
(a + d)2(b + c)2 − (a− d)2(b− c)2

(a + d)2 + (b + c)2 − (a− d)2 − (b− c)2

=
(a + d)((b + c) + (a− d)(b− c))((a + d)(b + c)− (a− d)(b− c)

(a + d)2 − (a− d)2 + (b + c)2 − (b− c)2

=
4(ac + bd)(ab + cd)

4(bc + ad)

=
(ac + bd)(ab + cd)

(bc + ad)
.

To learn what this tells us about the convex quadrilateral ABCD the length of
whose diagonal AC is x, we recast this identity as follows. It’s equivalent to the
following:

x2bc + x2ad = a2bc + b2ad + c2ad + d2bc = (a2 + d2)bc + (b2 + c2)ad,

or,

−bc(a2 + d2 − x2) = ad(b2 + c2 − x2) ⇔ −a2 + d2 − x2

2ad
=

b2 + c2 − x2

2bc
,

i.e., − cos B = cos D, which is the same as saying that B + D = π. Thus ABCD is
cyclic.
Concerning the area of ABCD, now assuming the latter to be cyclic, in the same
notation, this is equal to

∆(ABC) + ∆(CDA) =
1

4
[
√

(p− t)(t− q) +
√

r − t)(t− s)] =
1

4

√
(p− s)(r − q).

Now

p−s = (a+d)2−(b−c)2 = (a+d−(b−c))(a+d+(b−c)) = (a+d+c−b)(a+d+b−c) = 4(σ−c)(σ−b),

while

r−q = (b = c)2−(a−d)2 = (b+c−(a−d))(b+c+(a−d)) = (b+c+d−a)(b+c+a−d) = 4(σ−a)(σ−d).

Thus

∆(ABCD) =
1

4

√
16(σ − a)(σ − b)(σ − c)(σ − d),

as stated.
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Theorem 12. Among all cyclic quadrilaterals with the same perimeter, the square
contains the largest area.

Proof. In the notation above, the area of a cyclic quadrilateral with side lengths
a, b, c, d is √

(σ − a)(σ − b)(σ − c)(σ − d),

where σ is its semi perimeter, and so fixed. By Theorem 4,

√
(σ − a)(σ − b)(σ − c)(σ − d) ≤

(
(σ − a) + (σ − b) + (σ − c) + (σ − d)

4

)2

=
σ2

4
,

with equality iff a = b = c = d = σ/2.

7 The in-radius of a triangle

What point, if any, within a triangle is equidistant from the sides? To answer
this, let P be any point interior or on the sides of a triangle ABC. First, what
do me mean by the distance between P and BC ∪ BC ∪ AB? Denoting by x, y, z
the perpendicular distances from P to the sides BC, CA, AB, respectively, it makes
sense to define the distance, d(P ), from P to the sides to be the minimum of (x, y, z):

d(P ) = min(x, y, z).

As P varies within ABC, the sum of the areas of BPC, CPA,APB remains con-
stant, since this sum is equal to the area of ABC. In other words,

∆(ABC) = ∆(BPC) + ∆(CPA) + ∆(APB) =
1

2
ax +

1

2
by +

1

2
cz,

or
2∆(ABC) = ax + by + cz.

Hence
2∆(ABC) ≥ (a + b + c) min(x, y, z) = (a + b + c)d(P ),

so that

d(P ) ≤ 2∆(ABC)

a + b + c
=

∆(ABC)

s
.

Thus, the distance from any point to the sides doesn’t exceed the ratio

∆(ABC)

s
.

There is equality in the inequality iff

ax+ by + cz = d(P )a+ d(P )b+ d(P )c, a(x− d(P ))+ b(y− d(P ))+ c(z− d(P )) = 0.
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But a sum of three non-negative numbers is zero iff each of them is equal to zero,
which means that the equality occurs iff

x = y = z = d(P ) =
∆(ABC)

s
.

Since the internal bisectors of ABC are concurrent, and their point of intersection is
equidistant from the sides, there is a point within the triangle which is equidistant
from the sides. This is the in-centre, the centre of the inscribed circle, whose radius
is usually denoted by r, and so

r =
∆(ABC)

s
.

Theorem 13. Among all triangles with the same perimeter, the equilateral triangle
has the largest in-radius. In fact, in any triangle,

r ≤ s

3
√

3
,

with equality iff the triangle is equilateral.

Proof. This follows from the proof of Theorem 10 which shows that

∆2

s
≤ s3

27
,

whence

r2 =
∆2

s2
≤ s2

27
, r ≤ s

3
√

3
.

Exercise. What point within a triangle has the property that the sum of its distances
from the sides is a minimum?

Theorem 14. There is a point within a triangle, known as the Lemoine point of
the triangle, which has the property that the sum of the squares of its distances from
the sides is a minimum.

Proof. To explore this, in the usual notation, let P be a point within ABC, and let
x, y, z be its distances to the sides BC, CA, AB, respectively. Then

2∆(ABC) = ax + by + cz.

Subject to this constraint, the quantity we wish to minimize as P varies is x2+y2+z2.
But, by the first exercise following Theorem 6,

ax + by + cz =
√

a2x2 +
√

b2y2 +
√

c2z2 ≤
√

(a2 + b2 + c2)(x2 + y2 + z2),

with equality iff
a

x
=

b

y
=

c

z
=

a2 + b2 + c2

2∆
.

17



Thus,

x2 + y2 + z2 ≥ 4∆2

a2 + b2 + c2
,

with equality iff

x =
2∆a

a2 + b2 + c2
, y =

2∆b

a2 + b2 + c2
, z =

2∆c

a2 + b2 + c2
.

This analytical argument establishes a lower bound for the sums of the squares
x2+y2+z2 subject to the restriction that 2δ = ax+by+cz. It remains to verify that
there is actually a point within the triangle whose distances x, y, z are proportional
to the side lengths a, b, c in the manner shown in the displayed equations. Can you
fill in the rest?

Corollary 1.

r ≥ 2∆√
3(a2 + b2 + c2)

,

with equality iff a = b = c.

Proof. The in-centre of the triangle is equidistant from the sides. Hence the sum of
the squares of these distances exceeds

4∆2

a2 + b2 + c2
,

whence

3r2 ≥ 4∆2

a2 + b2 + c2
,

as claimed.

Exercise. Prove the last result directly without appealing to Theorem 14.

8 The circum-radius of a triangle

Is there a point in the plane of a triangle which is equidistant from the vertices? The
answer is ”yes”: the point of intersection of the bisectors of the sides is equidistant
from the vertices. This point is the centre—the circum-centre—of a circle—the
circum-circle—that passes through the three vertices. The radius of this circle is
denoted by R.
To evaluate R in terms of the sides and angles, let O denote the circum-centre, and
consider the isosceles triangle BOC. Since BC is a chord of the circle, ∠BOC =
2∠A. Hence, by the Cosine Rule,

cos 2A = cos ∠BOC =
R2 + R2 − a2

2R2
= 1− a2

2R2
.
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In other words,

1− 2 sin2 A = 1− a2

2R2
, 2R =

a

sin A
.

Hence

2R =
a

sin A
=

b

sin B
=

c

sin C
.

This is one expression for the circum-radius of a triangle. Others can be derived
from it. For instance, it easily follows that

R =
abc

4∆
=

abc

4rs
.

Since the in-circle is a subset of the triangle, and this in turn is a subset of the
circum-circle, we see that

πr2 ≤ ∆ ≤ πR2,

whence r ≤ R. This raises the question: How much bigger is R than r? Computing
these quantities for an equilateral triangle, it’s tempting to conjecture that 2r ≤ R.
This turns out to be true.

Exercise. Suppose ABC is isosceles. Prove that 2r ≤ R.

Theorem 15 (Euler). In any triangle, 2r ≤ R, with equality only for an equilateral
triangle.

Proof. We have

r =
∆

s
, R =

abc

4∆
.

Hence
r

R
=

4∆2

abcs
=

4(s− a)(s− b)(s− c)

abc
.

So, we must prove that

8(s− a)(s− b)(s− c) ≤ abc.

But this is a consequence of the worked example after Theorem 3! And there is
equality iff

s− a = s− b = s− c, a = b = c.

Thus Euler’s theorem is true.
Is there a point in the plane of a triangle such that the sum of its distances from
the vertices is a minimum? This was first asked by Fermat. Torricelli provided
a solution. It’s next to impossible to treat this without adverting to Napoleon’s
theorem. This states the following

Theorem 16 (Napoleon). If three equilateral triangles are erected externally (or
internally) on the sides of a triangle, then their centroids form an equilateral triangle.

Exercise. Try proving this!
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Exercise. Let BA′C, CB′A, AC ′B be three equilateral triangles erected externally
on the sides of a triangle ABC. Prove that

|AA′| = |BB′| = |CC ′| =
√

a2 + b2 + c2

2
+ 2

√
3∆.

Here’s a clue to doing Fermat’s problem.

Theorem 17. Let P be any point within a triangle ABC. Then

|PA|+ |PB|+ |PC| ≥
√

a2 + b2 + c2

2
+ 2

√
3∆.

Proof. Rotate the triangle BPC counterclockwise about the vertex C through an
angle of 60 degrees. Let the image of P be denoted by P ′. Then, in the notation
of the last exercise, A′P ′C is the image of BPC. Since PP ′C is equilateral, so that
|CP | = |PP ′|, and |BP | = |A′P ′|, by construction, we see that

|AP |+ |BP |+ |CP | = |AP |+ |A′P ′|+ |P ′P | = |AP |+ |PP ′|+ |P ′A′|.

This is the length of the broken line made up of the segments A′P ′, P ′P, PA that
joins A and A′. Since the shortest distance between two points is a straight line, we
deduce that

|AP |+ |BP |+ |CP | ≥ |A′A|,
which proves the result.

Exercise. Figure out from this the solution to Fermat’s problem.

Exercise. Deduce that

3R ≥
√

a2 + b2 + c2

2
+ 2

√
3∆.

Theorem 18. The centroid (centre of gravity) of a triangle has the property that the
sum of the squares of its distances from the vertices is a minimum. This minimum
is given by

a2 + b2 + c2

3
.

Proof. It’s convenient to use Coordinate Geometry to show this. To this end,
let A = (a1, a2), B = (b1, b2), C = (c1, c2) denote the vertices of a triangle. Let
P = (x, y) be any point in the plane. Then

|PA| =
√

(x− a1)2 + (y − a2)2,

with similar expressions for |PB|, |PC|. The quantity we’re interested in is

(x− a1)
2 + (y − a2)

2 + (x− b1)
2 + (y − b2)

2 + (x− c1)
2 + (y − c2)

2 ≡ f(x) = g(y),
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where

f(x) = (x− a1)
2 + (x− b1)

2 + (x− c1)
2, g(y) = (y − a2)

2 + (y − b2)
2 + (y − c2)

2.

The functions f, g are quadratics in x, y, respectively. Expanding f and collecting
terms we see that

f(x) = 3x2 − 2x(a1 + b1 + c1) + a2
1 + b2

1 + c2
1,

and completing the square on x

f(x) = 3(x− a1 + b1 + c1

3
)2 + a2

1 + b2
1 + c2

1 − 3(
a1 + b1 + c1

3
)2

= 3(x− a1 + b1 + c1

3
)2 +

3(a2
1 + b2

1 + c2
1)− (a2

1 + b2
1 + c2

1 + 2a1b1 + 2ab1c1 + 2c1a1)

3

= 3(x− a1 + b1 + c1

3
)2 +

2(a2
1 + b2

1 + c2
1)− (2a1b1 + 2ab1c1 + 2c1a1)

3

= 3(x− a1 + b1 + c1

3
)2 +

(a1 − b1)
2 + (b1 − c1)

2 + (c1 − a1)
2

3

≥ (a1 − b1)
2 + (b1 − c1)

2 + (c1 − a1)
2

3
,

with equality iff

x =
a1 + b1 + c1

3
.

Similarly, g attains its minimum when

y =
a2 + b2 + c2

3
,

and its minimum value is

(a2 − b2)
2 + (b2 − c2)

2 + (c2 − a2)
2

3
.

In other words, the expression

|AP |2 + |BP |2 + |CP |2

achieves its minimum value when the coordinates of P are

x =
a1 + b1 + c1

3
, y =

a2 + b2 + c2

3
,

the coordinates of the centroid of ABC. Moreover, the minimum value is given by

(a1 − b1)
2 + (b1 − c1)

2 + (c1 − a1)
2

3
+

(a2 − b2)
2 + (b2 − c2)

2 + (c2 − a2)
2

3

=
[(a1 − b1)

2 + (a2 − b2)
2] + [(b1 − c1)

2 + (b2 − c2)
2] + [(c1 − a1)

2 + (c2 − a2)
2]

3

=
|AB|2 + |BC|2 + |CA|2

3

=
a2 + b2 + c2

3
.
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Thus, for all points P in the plane of ABC,

|AP |2 + |BP |2 + |CP |2 ≥ a2 + b2 + c2

3
,

with equality holding iff P is the centroid of ABC.

Corollary 2.

R ≥
√

a2 + b2 + c2

3
.

9 Reflections

Given a line L and two points A,B on the same side of it, what point P ∈ L has
the property that |AP |+ |PB| is as short as possible?

Theorem 19 (Heron). Let A,B be two points on the same side of a line L. Let
P be the intersection of L and the line joining A to the reflection, B′, of B in L.
Then, if X is any other point in L,

|AX|+ |XB| ≥ |AP |+ |PB|.

Proof. By definition of B′, |PB| = |PB′| and |XB| = |XB′|. Hence, applying the
triangle inequality in the (possibly degenerate) triangle AXB′,

|AX|+ |XB| = |AX|+ |XB′| ≥ |AB′| = |AP |+ |PB′| = |AP |+ |PB|,

as claimed.
This is the Reflection Principle.

Theorem 20. Among all triangles with the same area the equilateral triangle has
the smallest perimeter.

Consider all those triangles with the same area ∆. Suppose ABC is a non-equilateral
triangle with area ∆. Suppose a = max(a, b, c). Consider the isosceles triangle
standing on the same base BC with the same height as ABC. This too has area ∆.
By the Reflection Principle its perimeter does not exceed that of ABC. Now repeat
the same argument using one of the equal sides of the isosceles triangle as base to
construct an equilateral one with the given area.
Returning to Theorem 19, it seems clear that as X moves along L towards P , the
expression |AX|+ |XB| decreases. To confirm this, we prove a preliminary result.

Lemma 2. Suppose P is an interior point of a triangle ABC. Then

|BP |+ |PC| ≤ |BA|+ |AC|,

with equality iff P coincides with A.
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Proof. Let the line through B and P meet AC at Q. By the triangle inequality,

|BA|+ |AQ| ≥ |BQ|.
Also, for the same reason,

|PQ|+ |QC| ≥ |PC|.
Hence

|BP |+ |PC| ≤ |BP |+ |PQ|+ |QC|
= |BQ|+ |QC|
≤ |BA|+ |AQ|+ |QC|
= |BA|+ |AC|.

Theorem 21. Let A,B be two points on the same side of a line L. Let P be the
intersection of L and the line joining A to the reflection, B′, of B in L. Let X be
any other point in L, and Y a point in L that is between X and P . Then

|AX|+ |XB| ≥ |AY |+ |Y B|.
Proof. By hypothesis, Y is an interior point of the triangle AXB′, and so, by the
last lemma,

|AX|+ |XB| = |AX|+ |XB′|
≥ |AY |+ |Y B′|
= |AY |+ |Y B|,

by the Reflection Principle.

Theorem 22. Suppose ABC is acute-angled and X ∈ BC. Denote by X ′, X ′′ the
reflections of X in the sides CA, AB, respectively. Then

∠X ′′AX ′ = 2∠A,

and |X ′′X ′| is least when X is the foot of the perpendicular from A on BC.

Proof. Let XX ′ intersect AC at P . Let XX ′′ intersect AB at Q. Since the right-
angled triangles XAP and PX ′A are congruent, ∠XAP = ∠PAX ′. In the same
way we see that ∠XAQ = ∠QAX ′′. Hence

∠X ′′AX ′ = ∠X ′′AQ + ∠QAX + ∠XAP + ∠PAX ′ = 2(∠QAX + ∠XAP ) = 2∠A.

Since also, by reflection,
|X ′′A| = |AX| = |AX ′|,

we deduce that

|X ′′X ′|2 = |X ′′A|2 + |AX ′|2 − 2|X ′′A| |AX ′| cos ∠X ′′AX ′

= 2|AX|2 − 2|AX|2 cos 2A

= 4|AX|2 sin2 A

≥ 4|AD|2 sin2 A,
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where D is the foot of the perpendicular from A on BC. Thus the least value of
|X ′′X ′| is 2|AD| sin A.

Theorem 23 (Fejér). Let ABC be acute-angled. Fix X ∈ BC. If Y ∈ CA, Z ∈
AB, then

|XY |+ |Y Z|+ |ZX| ≥ |X ′′X ′|,
with equality iff Y, Z ∈ X ′′X ′.

Proof. By Reflection,

|XZ|+ |ZY |+ |Y X| = |X ′′Z|+ |ZY |+ |Y X ′| ≥ |X ′′X ′|,

since X ′′Z ∪ ZY ∪ Y X ′ is a broken line joining the points X ′′ and X ′. There is
equality iff Z = Q, Y = P , with P,Q as in the previous theorem.
The pedal triangle of an acute-angled triangle ABC is the inscribed triangle whose
vertices are the feet of the altitudes of ABC.
You now have enough evidence to finish off Fejér’s proof of Fagnano’s theorem which
tells that

Theorem 24. Suppose ABC is an acute-angled triangle. Of all inscribed triangles
in ABC, the pedal triangle has the smallest perimeter.

Here’s a different Proof. Let XY Z be an arbitrary inscribed triangle with X ∈
BC, Y ∈ CA, Z ∈ AB. Let x = |BX|, y = |CY |, z = |AZ|. Then 0 ≤ x ≤ a, 0 ≤
y ≤ b, 0 ≤ z ≤ c.

|ZX|2 = (c− z)2 + x2 − 2x(c− z) cos B

= (c− z)2 + x2 + 2x(c− z) cos(A + C)

= (x cos A + (c− z) cos C)2 + (x sin A− (c− z) sin C)2.

Hence,
|ZX| ≥ x cos A + (c− z) cos C,

which is positive by hypothesis, with equality iff x sin A = (c− z) sin C, i.e., iff

ax + cz = c2, (1)

by the Sine Rule. Similarly,

|XY | ≥ y cos B + (a− x) cos A,

with equality iff

ax + by = a2. (2)

And
|Y Z| ≥ z cos C + (b− y) cos B,
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with equality iff

by + cz = b2. (3)

Thus
|XY |+ Y Z|+ |ZX| ≥ a cos A + b cos B + c cos C,

with equality iff equations (1), (2) and (3) hold. Now the solution of these equations
is given by

x = c cos B, y = a cos C, z = b cos A,

which is equivalent to saying that X, Y, Z are the feet of the altitudes from A,B,C,
respectively, onto the opposite sides, i., XY Z is the pedal triangle. Conversely, if
XY Z is the pedal triangle, then, for instance,

|ZX|2 = (c− z)2 + x2 − 2x(c− z) cos B

= (c− b cos A)2 + (c cos B)2 − 2c(c− b cos A) cos2 B

= −c(c− 2b cos A) cos2 B + (c− b cos A)2

= (c2 − 2bc cos A) sin2 B + b2 cos2 A

= (a2 − b2) sin2 B + b2 − b2 sin2 A

= b2(1− sin2 B)

= b2 cos2 B,

by the Sine and Cosine Rules. Hence

|ZX| = b| cos B| = b cos B.

Similarly,
|XY | = c cos C, |Y Z| = a cos A,

whence

a cos A + b cos B + c cos C =
a2(b2 + c2 − a2) + b2(c2 + a2 − b2) + c2(a2 + b2 − c2)

2abc

=
2(a2b2 + b2c+c2a2)− a4 − b4 − c4

2abc

=
8∆2

abc
,

is the perimeter of the pedal triangle, and no other inscribed triangle has a smaller
one.
A related result is the following, whose proof we sketch, omitting a proof of a crucial
property of the Lemoine point of a triangle, namely, that it is the centroid of its
pedal triangle, the triangle whose vertices are the feet of the perpendiculars from
the Lemoine point onto the sides.
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Theorem 25. Among all triangles inscribed in a given one ABC, the pedal triangle
of the Lemoine point has the property that the sum of the squares of its sides is a
minimum. In fact, in the usual notation, if XY Z is inscribed in ABC, then

|XY |2 + |Y Z|2 + |ZX|2 ≥ 4∆2

a2 + b2 + c2
,

and this is best possible.

Proof. We use two important properties of the Lemoine point, which we denote by
L. One, according to Theorem 14, the sum of the squares of its distances from the
sides of ABC is a minimum. Two, which we’re assuming, it is the centroid of its
pedal triangle, and is the only point with this property.
To proceed, let X, Y, Z be points on the sides BC, CA,AB, respectively. Let O be
the centroid of XY Z. Denote by E, F, G the feet of the perpendiculars from O onto
the sides BC,CA, AB, and by P,Q, R the feet of the perpendiculars from L onto
the sides BC,CA, AB. The triangle PQR is the pedal triangle of L, and, denoting
the length of the median from P by mp, etc., mp = 3

2
|LP |, by the second property,

and so, since

m2
a + m2

b + m2
c =

3

4
[a2 + b2 + c2],

we see that, by Theorem 14,

4∆2

a2 + b2 + c2
= |PQ|2 + |QR|2 + |RP |2

=
4

3
[m2

p + m2
r + m2

q]

= 3[|LP |2 + |LR|2 + |LQ|2]
≤ 3[|OE|2 + |OF |2 + |OG|2]
≤ 3[|OX|2 + |OY |2 + |OZ|2]
=

4

3
[m2

x + m2
y + m2

z]

= |XY |2 + |Y Z|2 + |ZX|2.

10 Euler’s theorem revisited

We sketch a variational approach to Euler’s result that R ≥ 2r, due to Kazarinoff.
The relation

r =
∆

s
tells us that among all triangles with the same area, r is greatest when s is least.

Theorem 26. Consider all triangles PBC with the same base BC and with variable
vertex P that belongs to a line L parallel to the base, and denote by ABC the isosceles
triangle, with A ∈ L. Then, as a function of P , r(PBC) increases as P moves
towards A.
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Proof. Assume P, Q ∈ L with P between A and Q. The claim is that

r(QBC) ≤ r(PBC) ≤ r(ABC),

equivalently,
s(QBC) ≥ s(PBC) ≥ s(ABC),

Or
|BQ|+ |QC| ≥ |BP |+ |PC| ≥ |BA|+ |AC|.

To see this, let C ′ be the reflection of C in L. Then P is an interior point of BQC ′,
and so, by the previous lemma,

|BP |+ |PC| = |BP + |PC ′| ≤ |BQ|+ |QC ′| = |BQ|+ |QC|,

as required.

Theorem 27. Suppose P belongs to the side AC of a triangle ABC. Then

r(BPC| ≤ r(BAC).

Proof. Let x = |BP |, y = |PC|. Since

r(ABC) =
ab sin C

a + b + c
, r(ABC) =

ay sin C

a + x + y
,

the claim is that

y

a + x + y
≤ b

a + b + c
⇔ a(b− y) + bx− cy ≥ 0.

But, b ≥ y, and so this holds as long as

b

c
≥ y

x
.

But, by the Sine Rule,
y

x
=

sin PBC

sin A
≤ sin C

sin C
=

b

c
.

The result follows.

Theorem 28 (Euler). Suppose ABC is a triangle. Then

R(ABC) ≥ 2r(ABC),

with equality iff ABC is equilateral.
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Proof. A calculation shows that there is equality when the triangle is equilateral.
Suppose ABC is not equilateral, and let b < min(a, c). Let Γ be the circum circle
of ABC. With C as one vertex inscribe an equilateral triangle B′A′C in Γ. Let the
line through A that is parallel with BC meet A′C at A′′. Then

r(BA′′C) > r(BAC)

by Theorem 26. Next,
r(BA′C) > r(BA′′C),

by Theorem 27. In other words, r(ABC) < r(BA′C).
To complete the argument, let the line through B that is parallel to A′C intersect
B′A′ at B′′. Applying Theorem 26 once more, we see that

r(A′BC) < r(A′B′′C).

And, then, by Theorem 27,

r(B′A′C) < r(B′A′C).

Thus

r(ABC) < r(B′A′C) =
1

2
R(ABC).

11 The Erdos-Mordell theorem

Theorem 29. Suppose P is any point within a triangle ABC, and let X,Y, Z be
the feet of the perpendiculars from P onto the sides BC, CA, AB, respectively. Then

|PA|+ |PB|+ |PC| ≥ 2(|PX|+ |PY |+ |PZ|),
with equality iff ABC is equilateral and P is its in-centre.

Proof. Let x = |PX|, y = |PY |, z = |PZ|. Since AZPY is a cyclic quadrilateral,
and AP is a diameter of the circumscribing circle that passes through the vertices
of AZY ,

|PA| = |ZY |
sin A

.

Similarly,

|PB| = |ZX|
sin B

, |PC| = |XY |
sin C

.

But also,
cos ZPY = − cos A,

hence

|ZY |2 = |PZ|2 + |PY |2 − 2|PZ| |PY | cos ZPY

= z2 + y2 + 2zy cos A

= z2 + y2 − 2yz cos(B + C)

= (z sin B + y sin C)2 + (z cos B − y cos C)2.
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Hence
|ZY | ≥ z sin B + y sin C,

with equality iff z cos B = y cos C.
Similarly,

|ZX| ≥ z sin A + x sin C,

with equality iff z cos A = x cos C, and

|XY | ≥ y sin A + x sin B,

with equality iff y cos A = x cos B. It follows that

|PA|+ |PB|+ |PC| =
|ZY |
sin A

+
|XZ|
sin B

+
Y X|
sin B

≥ z sin B + y sin C

sin A
+

z sin A + x sin C

sin B
+

y sin A + x sin B

sin C

= z(
sin B

sin A
+

sin A

sin B
) + y(

sin C

sin A
+

sin A

sin C
) + x(

sin C

sin B
+

sin B

sin C
)

≥ 2(z + y + x)

= 2(|PX|+ |PY |+ |PZ|).

Equality prevails in the last step iff

sin A = sin B = sin C

i.e., iff ABC is equilateral. Hence there is equality throughout iff the triangle is
equilateral and x = y = z. Thus the equality holds, iff P is the in-centre of an
equilateral triangle.

29


