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International Mathematical Olympiad (IMO) is an annual six-

problem contest for pre-collegiate students and is the oldest of the

International Science Olympiads.

The first IMO was held in Romania in 1959. It was initially founded

for eastern European countries but eventually other countries par-

ticipated as well. It has since been held annually, except in 1980.

About 90 countries send teams of up to six students, plus one team

leader, one deputy leader, and observers.

The paper consists of six problems, with each problem being worth

seven points, the total score thus being 42 points. No calculators

are allowed. The examination is held over two consecutive days;

the contestants have four-and-a-half hours to solve three problems

per day. The problems chosen are from various areas of secondary

school mathematics, broadly classifiable as geometry, number theory,

algebra, and combinatorics. They require no knowledge of higher

mathematics such as calculus and analysis, and solutions are often

short and elementary. However, they are usually disguised so as to

make the process of finding the solutions difficult.
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Problem 1. (a) How many numbers are in the sequence

15, 16, 17, . . . , 190, 191 ?

(b) How many numbers are in the sequence

22, 25, 28, 31, . . . , 160, 163 ?

Solution. To answer the above question in a more general frame-

work we need the following definition:

Definition. An arithmetic progression or arithmetic sequence

is a sequence of numbers such that the difference of any two succes-

sive members of the sequence is a constant. This difference between

any successive terms is called the ratio of the arithmetic progression.

For instance, the sequence

15, 16, 17, . . . , 190, 191

is an arithmetic progression wirt ratio 1.

To find the number of the terms in an arithmetic progression we use

the formula
last term− first term

ratio
+ 1

In our case the total number of terms is

191− 15

1
= 176 + 1 = 177 terms

For the second example, the sequence

22, 25, 28, 31, . . . , 160, 163
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is an arithmetic progression with ratio 2 so the number of terms

would be
163− 22

3
= 47 + 1 = 48
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Let

a1, a2, a3, . . . , an

be an arithmetic progression with n terms and having the ration r.

From the above formula we find

an − a1

r
+ 1 = n

Hence

an = a1 + r(n− 1)

Another important formula concerns the sum of terms in an arith-

metic progression

a1 + a2 + · · · + an =
n(a1 + an)

2

In particular we have

(a) 1 + 2 + 3 + · · · + n =
n(n + 1)

2
(b) 1 + 3 + 5 + · · · + (2n− 1) = n2

Other useful formulas are as follows

(c) 12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6

(d) 13 + 23 + 33 + · · · + n3 =

[
n(n + 1)

2

]2
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Problem 2. For any positive integer n find the sum

Sn = 1 · 2 + 2 · 3 + 3 · 4 + · · · + n(n + 1)

Solution. Remark that

Sn = 1(1 + 1) + 2(2 + 1) + 3(3 + 1) + · · · + n(n + 1)

= (12 + 1) + (22 + 2) + (32 + 3) + · · · + (n2 + n)

= (12 + 22 + 33 + · · · + n2) + (1 + 2 + 3 + · · · + n)

=
n(n + 1)(2n + 1)

6
+

n(n + 1)

2

=
n(n + 1)

2

[
2n + 1

3
+ 1

]

=
n(n + 1)

2

2n + 4

3

=
n(n + 1)(n + 2)

3

In the similar way one can compute

1 · 3 + 3 · 5 + 5 · 7 + · · · + (2n− 1)(2n + 1)
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Problem 3. For any positive integer n find the sum

Sn = 1 · 2 · 3 + 2 · 3 · 4 + 3 · 4 · 5 + · · · + n(n + 1)(n + 2)

Solution. The general term in the above sum is

k(k + 1)(k + 2)

where k = 1, 2, 3, . . . , n

Remark that

k(k + 1)(k + 2) = k(k2 + 3k + 2) = k3 + 3k2 + 2k

so

Sn = (13 + 3 · 12 + 2 · 1) + (23 + 3 · 22 + 2 · 2) + · · · + (n3 + 3 · n2 + 2 · n)

= (13 + 23 + · · · + n3) + 3(12 + 22 + · · · + n2) + 2(1 + 2 + . . . n)

=
n2(n + 1)2

4
+ 3

n(n + 1)(2n + 1)

6
+ 2

n(n + 1)

2

=
n(n + 1)

2

[
n(n + 1)

2
+ (2n + 1) + 2

]

=
n(n + 1)

2

n2 + 5n + 6

2

=
n(n + 1)(n + 2)(n + 3)

4
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Problem 4. Each of the numbers

1 = 1, 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4

represent the number of balls that can be arranged evenly in an

equilateral triangle.
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This led the ancient Greeks to call a number triangular if it is the

sum of consecutive integers beginning with 1.

Prove the following facts about triangular numbers:

(a) If n is a triangular number then 8n + 1 is a perfect square

(Plutarch, circa 100 AD)

(b) The sum of any two triangular numbers is a perfect square

(Nicomachus, circa 100 AD)

(b) If n is a triangular number so are the numbers 9n + 1 and

25n + 3 (Euler, 1775)
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Solution. Remark first that n is a triangular number if there exists

a positive integer k such that

n = 1 + 2 + 3 + · · · + k

that is,

n =
k(k + 1)

2

(a) If n = k(k+1)
2 then

8n + 1 = 4k(k + 1) + 1 = 4k2 + 4k + 1 = (2k + 1)2

(b) Let n and m be two consecutive triangular numbers. Then,

there exists k ≥ 1 such that

n =
k(k + 1)

2
and m =

(k + 1)(k + 2)

2

Then

n + m =
k(k + 1)

2
+

(k + 1)(k + 2)

2
=

k(k + 1) + (k + 1)(k + 2)

2

n + m =
(k + 1)(2k + 2)

2
= (k + 1)2
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Problem 5. Let tn be the nth triangular number, that is

t1 = 1, t2 = 3, t3 = 6, t4 = 10, . . .

Prove the formula

t1 + t2 + · · · + tn =
n(n + 1)(n + 2)

6

Solution.
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We have

tn =
n(n + 1)

2
=

n2 + n

2
.



1212

Therefore,

t1 + t2 + · · · + tn =
12 + 1

2
+

22 + 2

2
+

32 + 3

2
+ · · · + n2 + n

2

=
12 + 22 + 32 + · · · + n2

2
+

1 + 2 + 3 + · · · + n

2

=
1

2

[
(12 + 22 + 32 + · · · + n2) + (1 + 2 + · · · + n)

]

=
1

2

[n(n + 1)(2n + 1)

6
+

n(n + 1)

2

]

=
1

2

n(n + 1)

2

[2n + 1

3
+ 1

]

=
1

2

n(n + 1)

2

2n + 4

3

=
n(n + 1)(2n + 4)

12

=
n(n + 1)(n + 2)

6
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Problem 6. Prove that if an infinite arithmetic progression of pos-

itive integers contains a perfect square, then it contains an infinite

number of perfect squares.

Solution. Let

a1 < a2 < · · · < an < an+1 < . . .

be an infinite arithmetic progression containing a perfect square, say

a2. Denote by r its ratio. Then, the numbers

a2, a2 + r, a2 + 2r, . . . , a2 + kr

are terms of the above arithmetic progression, k = 1, 2, 3, . . . . In

particular the number

a2 + r(2a + r) = a2 + 2ar + r2 = (a + r)2

is a perfect square and is another term of the above arithmetic

progression. Thus,

(a + r)2, (a + r)2 + r, . . . , (a + r)2 + kr, . . .

are terms of the initial arithmetic progression. As above, it follows

that

(a + r)2 + r[2(a + r) + r2] = (a + 2r)2

is a perfect square and belongs to the initial arithmetic progression.

We have obtained so far that (a + r)2, (a + 2r)2 are terms in the
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progression. Preoceeding similarly we obtain that all the perfect

squares

(a + r)2, (a + 2r)2, . . . , (a + 100r)2, . . .

are terms in the initial arithmetic progression.



1515

Problem 7. Prove that there are no arithmetic progressions of

positive integers whose terms are all perfect squares.

Solution. Assume by contradiction that there exists positive in-

tegers

a1 < a2 < · · · < an < an+1 < . . .

such that

a2
1 < a2

2 < · · · < a2
n < a2

n+1 < . . .

is an arithmetic progression. Then, the ratio of it would be

r = a2
2 − a2

1 = a2
3 − a2

2 = · · · = a2
n − a2

n−1 = a2
n+1 − a2

n = . . .

It follows that

(an−an−1)(an +an−1) = (an+1−an)(an+1 +an), n = 2, 3, 4, . . .

Since an−1 < an < an+1 we have an+1 + an > an + an−1 so the

above equality yields

a2 − a1 > a3 − a2 > a4 − a3 > · · · > an − an−1 > · · · > 0

which is clearly impossible.
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Problem 8. Let

N = 1234 . . . 91011 . . . 99100101 . . . 20082009

be a number obtained by joining all positive integers from 1 to 2009.

(a) How many digist has N?

(b) Remove 9 digits from N such that N becomes as small as

possible.

Solution. (a) In writing the number N we use all the numbers

from 1 to 2009. We hav thus to count how many numbers of 1,2,3

and 4 digits are joined to write N .

• Numbers of 1 digis: 1,2,...,9 : 9 digits in total

• Numbers of 2 digits: 10,11,12,...,99 in total we have

(99− 9)× 2 = 180 digits

• Numbers of 3 digits: 100,101,...,999

(999− 99)× 3 = 2700 digits

• Numbers of 4 digits: 1000,1001,...,2009

(2009− 999)× 4 = 1010× 4 = 4040 digits

In total, N has

9 + 180 + 2700 + 4040 = 6929 digits

(b) N = 12345678910111213...2009
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We remove the digits 2,3,4,5,6,7,8,9, from 10 we remove 1 and from

12 we remove 2.

We obtain

M = 1011113141516...2009
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Problem 9. (a) Find how many numbers from 1 to 1000 are

divisible by 7.

(b) Find how many numbers from 1 to 1000 are divisible either by

7 or by 11.

Solution. We start with the following definition

Definition The integer part of a number x is the greatest integer

that is less or equal to x. It is denoted by [x].

Example [3.1] = 3, [5.76] = 5 but [−3.1] = −4 and [−5.76] = −6

(a) In our case, the number of multiples of 7 from 1, 2, 3, . . . , 100

equals

[
1000

7

]
= 142

(b) Let A be the set of numbers from 1 to 1000 that are divisibly by

7 and let B be the set of numbers from 1 to 1000 that are divisible

by 11. Then the set of numbers divisible either by 7 or by 11 is the

set A ∪B.

A B

We have the formula

|A ∪B| = |A| + |B| − |A ∩B|
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We have seen that |A| = 142 and similarly |B| =

[
1000

7

]
= 90.

also A∩B = the set of numbers between 1 to 1000 that are divisible

with both 7 and 11, so

|A ∩B| =

[
1000

77

]
= 12

Therefore |A ∪ B| = |A| + |B| − |A ∩ B| = 142 + 99− 12 = 229

numbers from 1 to 1,000 are divisible eithr by 7 or by 11.
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Problem 10. Which numbers from the sequence 1,2,1,...,1000000

are more: those divisible by 11 but not by 13 or those divisible by

13 but not by 11?

Solution.

Let A be the set of all positive integers between 1 and 1,000,000

that are divisible with 11 and let B be the set of numbers between

1 to 1,000,000 that are divisible by 13.

We are required to find the number of elements of the sets A \ B

and B \ A.

Remark that A∩B represents the set of all positive integers between

1 to 1,000,000 that are divisible by 11 and 13.

By the previous formula we have

|A| =

[
1, 000, 000

11

]
= 90, 909 |B| =

[
1, 000, 000

13

]
= 76, 923

|A ∩B| =

[
1, 000, 000

143

]
= 6, 993

Then

|A \B| = |A| − |A ∩B| = 90, 909− 6, 993 = 83, 916

and

|B \ A| = |B| − |A ∩B| = 76, 923− 6, 993 = 69, 930

There are more numbers divisible by 11 and not by 13.
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Problem 11. A board 9 × 9 is divided into 81 unit squares. Find

the number of squares with sides parallel to the sides of the initial

board that contain an integer number of unit squares.

Solution. We have to find the number of 1 × 1, 2 × 2, ..., 9 × 9

squares on the board. First, it is easy to see that the number of

1× 1 squares is 92 = 81.

To find the number of 2× 2 squares on the board we have to count

the number of red unit squares in the figure below as they represent

the top-left corner of a possible 2× 2 square.

Figure 1. The top left unit square of any 2× 2 must be one of the red squares

Therefore, there are 82 squares of side lenght 2. Similarly, the num-

ber of 3× 3 squares is 72, the number of 4× 4 squares is 62,..., the

number of 9× 9 squares is 12. The number of the required squares

is

12 + 22 + ... + 82 + 92 =
9 · 10 · 19

6
= 285
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Homework

1. Calculate the sums

(i) 1 · 3 + 2 · 4 + 3 · 5 + · · · + n(n + 2)

(ii) 1 · 3 · 5 + 2 · 4 · 6 + 3 · 5 · 7 + · · · + n(n + 2)(n + 4)

2. Prove that if an infinite arithmetic progression contains a perfect

cube, then it contains infinitely many perfect cubes.

3. (a) Find the numbers from the sequence 1,2,3,...,137 that are

divisible by 3 or by 5.

(b) (a) Find the numbers from the sequence 1,2,3,...,137 that are

divisible either by 3 or by 5 but not by 7.


