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1 A review of the trigonometrical functions

These are sin, cos, & tan. These are discussed in the Maynooth Olympiad
Manual, which we refer to as MOM! We assume that you know the following
addition formulae: for all x, y

sin(x± y) = sin x cos y ± cos x sin y,

cos(x± y) = cos x cos y ∓ sin x sin y.

Letting x = y we deduce the following double-angle formulae: for all x,

sin(2x) = 2 sin x cos x, sin 0 = 0;

cos(2x) = cos2 x− sin2 x, cos 0 = cos2 x + sin2 x.

From the last of these we see that cos 0 = cos2 0, whence cos 0 is 0 or 1. But
cos 0 = 0 implies that 0 = cos2 x + sin2 x, ∀x, i.e., cos x = sin x = 0 for all
real x, which is false. So, cos 0 = 1. Hence

cos(2x) = cos2 x− sin2 x, 1 = cos2 x + sin2 x,

and so
cos(2x) = 2 cos2 x− 1 = 1− 2 sin2 x,

formulae which are very useful, and important to remember.

Exercise 1 Show that

tan(x± y) =
tan x± tan y

1∓ tan x tan y
,

as long as cos x cos y 6= 0. What’s the result if cos x cos y = 0?
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Exercise 2 Verify that

1.
2 cos(x + y) cos(x− y) = cos(2x) + cos(2y);

2.
2 sin(x + y) sin(x− y) = cos(2y)− cos(2x);

3.
sin(2x) + sin(2y) = 2 sin(x + y) cos(x− y);

4.
sin(2x)− sin(2y) = 2 cos(x + y) sin(x− y).

1.1 Some values of these functions

In a right-angled triangle ABC, which has its right-angle at C,

sin A =
BC

AB
=

a

c
, cos A =

AC

AB
=

b

c
,

and

sin B =
AC

AB
=

b

c
, cos B =

BC

AB
=

a

c
.

Applying these formulae to the right-angled triangle ABC, where a = 1, b =√
3, c = 2, we infer that A has 30 degrees or π/6 radians, B has 60 degrees

or π/3 radians, and C has 90 degrees or π/2 radians, whence

sin
π

6
=

1

2
, cos

π

6
=

√
3

2
.

Similarly,

sin
π

3
=

√
3

2
, cos

π

3
=

1

2
,

and

sin
π

2
=

AB

AB
= 1.

Applying these formulae to the right-angled triangle ABC, where a = 1 =
b, c =

√
2, we infer that A has 45 degrees or π/4 radians, B has 45 degrees

or π/4 radians, and C has 90 degrees or π/2 radians, whence

sin
π

4
=

1√
2
, cos

π

4
=

1√
2
.
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Exercise 3 Evaluate
tan

π

3
, tan

π

6
, tan

π

4
.

Is tan π
2

defined?

1.2 The Cosine Rule, and some consequential formulae

The above formulae tell us that in a right-angled triangle we can compute
the sines, cosines and tangents of the acute angles, once we know the side
lengths of the triangle. In an arbitrary triangle, we can compute the cosine
of any one of its angles by using the Cosine Rule: if ABC is a triangle, and
a, b, c are the lengths of the sides BC, CA, AB, respectively, then

cos A =
b2 + c2 − a2

2bc
, cos B =

c2 + a2 − b2

2ca
, cos C =

a2 + b2 − c2

2ab
.

(See Mom, p. 28)Are there similar-type expressions for the sines of the
angles? Yes, and they can be determined by using the fact that

sin2 x = 1− cos2 x = (1− cos x)(1 + cos x).

Exercise 4 Show that in any triangle ABC

1− cos A =
(a + b− c)(c + a− b)

2bc
, 1 + cos A =

(a + b + c)(b + c− a)

2bc
.

Deduce that

cos
A

2
=

√
s(s− a)√

bc
, sin

A

2
=

√
(s− b)(s− c)√

bc
,

where s is the semi-perimeter of ABC, i.e., 2s = a + b + c.

Combining the last pair of these, we see that

sin A = 2 sin
A

2
cos

A

2
= 2

√
s(s− a)(s− b)(s− c)

bc
, tan

A

2
=

√
(s− b)(s− c)√

s(s− a)
.
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2 The area, the inradius and circumradius of

a triangle ABC

It’s customary to denote these objects by ∆, r, R, respectively. If we need to
be specific about the area of a particular triangle ABC, we sometimes write
(ABC) in place of ∆. Depending on the data, there are different ways of
computing ∆. For example,

∆ =
1

2
bc sin A =

1

2
ca sin B =

1

2
ab sin C.

Hence, appealing to the formula for sin A, given above,

∆ =
√

s(s− a)(s− b)(s− c).

This is known as Heron’s formula; it’s symmetric in the side lengths a, b, c.
Note, too, that

2
∆

abc
=

sin A

a
=

sin B

b
=

sin C

c
.

This is the familiar Sine Rule for a triangle.

Exercise 5 Prove that

16∆2 = 2(a2b2 + b2c2 + c2a2)− a4 − b4 − c4.

2.1 The Circumcircle

The perpendicular bisectors of the sides of any triangle concur at a point
which is equidistant from its vertices. (This is a theorem, which we take
for granted; it follows from Ceva’s theorem which was discussed last year.
Consult your notes from last year; and see MOM p.127.) The point of con-
currency is the centre of a circle, called the circumcentre of the triangle, that
passes through these points. The radius of this circle is called the circum-
radius of the triangle; it’s denoted by R. Referring to a couple of suitable
diagrams—obtained by supposing the circumcentre is an internal point or an
external point of the triangle—(for one diagram see MOM p.27) you should
be able to argue that

sin A =
a/2

R
=

a

2R
,

1

2R
=

sin A

a
.
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Hence, we can compute R, once we know the measure of an angle and the
length of the opposite side. If the lengths of the three sides are specified, we
can use an alternative formula:

1

2R
=

2
√

s(s− a)(s− b)(s− c)

abc
=

2∆

abc
.

Exercise 6 Show that in any triangle ABC,

sin A sin B sin C =
8∆3

(abc)2
.

2.2 The incircle

The inradius of a triangle is a concept dual to the circumradius. It is the
radius of the circle that touches the three sides internally. (This hints at the
possibility that there are exradii associated with the triangle as well. Can
you see what these might be?) That such a circle exists is a consequence of
the fact that, by Ceva’s theorem alluded to above, the angle bisectors concur
at a point which is equidistant from the three sides. The radius of this circle
is dented by r; it is called the inradius of the triangle.

Given ABC, denote by I the point of concurrency of the angle bisectors.
Then, referring to the diagram on p. 32 of MOM, it’s clear that the area of
ABC is composed of the areas of the three triangles AIB,BIC, CIA, which
have sides in common, but are otherwise disjoint. Hence

∆ = (ABC)

= (AIB) + (BIC) + (CIA)

=
1

2
cr +

1

2
ar +

1

2
br

=
r

2
(a + b + c)

= sr,

whence

r =
∆

s
.

Thus knowing the side lengths we can compute r.
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Exercise 7 Show that in any triangle ABC,

sin
A

2
sin

B

2
sin

C

2
=

r∆

abc
=

∆2

sabc
,

and

cos
A

2
cos

B

2
cos

C

2
=

∆s

abc
=

∆2

rabc
.

3 The graphs of sine and cosine

Both sin and cos are periodic of periodic 2π:

sin(x + 2π) = sin x, cos(x + 2π) = cos x, ∀x.

This means that the graphs of both follow a wave pattern, and that we can
confine our attention to the parts of the graphs that lie above the interval
[0, 2π]. We cam make the following remarks about the graph of y = sin x.

1. it is anti-symmetric (centrally symmetric ?) about the origin, i.e.,

sin(−x) = − sin x, ∀x.

In other words, sin is an odd function—like the functions x, x3, x5, . . .,
and linear combinations of these such as 2x− x3 + 5x7;

2. it is symmetric about x = π/2, i.e.,

sin(π − x) = sin x, ∀x;

3. it increases on [0, π/2] ∪ [3π/2, 2π], and decreases on [π/2, 3π/2];

4. the slope of the tangent is positive at any point of the curve over
(0, π/2), zero at x = π/2, and negative at any point of the curve over
(π/2, π).

5. the slope of the tangent at any point of the curve decreases on (0, π),
and increases on (π, 2π).

6. the arc of the curve over [0, π] joining any two points of it lies above
the chord connecting these points. In other words, sin is concave on
this interval.
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7. by contrast, sin is convex on [π, 2π]: on this interval, the arc joining
two points lies below the chord joining them.

Exercise 8 Noting that cos(π/2 − x) = sin x, or otherwise, establish the
following properties of the graph of cos:

1. cos(−x) = cos x, i.e, cos is even, like 1, x2, x4, . . ., and linear combina-
tions of these such as 2 + x2 − 4x4 + 5x10;

2. cos decreases on [0, π], and increases on [π, 2π];

3. cos is concave on [0, π/2] ∪ [3π/2, 2π], and convex on [π/2, 3π/2].

4 Some trigonometrical inequalities

In case of a triangle ABC, in Sections 2.1 and 2.2 above, we encountered
expressions like the products sin A sin B sin C and cos A

2
cos B

2
cos C

2
, which

are functions of the (measures of the angles) A, B, C which are deemed to
be positive numbers satisfying the constraint A + B + C = π. By allowing
these to vary subject to these constraints, the values of the products change.
However, since 0 ≤ sin x ≤ 1, for all x ∈ [0, π], and 0 ≤ cos x ≤ 1, for all
x ∈ [0, π/2], and at most one angle in a triangle is a right-angle, and none
has measure 0 or π, we see that, in any triangle ABC,

0 < sin A sin B sin C < 1, 0 < cos
A

2
cos

B

2
cos

C

2
< 1.

The questions arise: what are the extreme values of these products? Are
these extreme values attained in some triangle?

To answer these and similar questions, we establish a lemma which is a
statement about the graph of y = log sin x on (0, π), namely that it is concave
on this interval. (See if you can sketch the graph of this function.)

Lemma 1 If x, y ∈ [0, π], then√
sin x sin y ≤ sin

x + y

2
.

There is equality iff x = y.
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Proof. Since sin x ≥ 0 for all x ∈ [0, π], the given inequality is equivalent to
the statement that

2 sin x sin y ≤ 2 sin2 x + y

2
= 1− cos(x + y) = 1− cos x cos y + sin x sin y,

i.e.,
sin x sin y + cos x cos y ≤ 1, ⇔ cos(x− y) ≤ 1,

which is true. Moreover, the inequality is strict unless cos(x − y) = 1, i.e,
unless x− y is an even multiple of π. But −π ≤ x− y ≤ π. Hence x = y.

Here’s another approach: since
√

ab ≤ (a+ b)/2, if a, b ≥ 0, with equality
iff a = b, we see that√

sin x sin y ≤ sin x + sin y

2
= sin

x + y

2
cos

x− y

2
≤ sin

x + y

2
,

with equality as before.
We can now build on this to deduce a more general inequality.

Lemma 2 If x, y, z ∈ [0, π], then

3
√

sin x sin y sin z ≤ sin
s + y + z

3
.

There is equality here iff x = y = z.

Proof. We introduce another variable w ∈ [0, π] and apply the result just
proved to the expression

4
√

sin x sin y sin z sin w =

√√
sin x sin y

√
sin z sin w.

Doing so, we see that

4
√

sin x sin y sin z sin w ≤
√

sin
x + y

2
sin

z + w

2

≤ sin

( x+y
2

+ z+w
2

2

)
= sin

(
x + y + z + w

4

)
.

Moreover, there is equality in the first inequality iff x = y and z = w, and
in the second iff x + y = z + w. Thus, there is equality throughout iff
x = y = z = w.
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We exploit this to get the result we want. Given x, y, z ∈ [0, π] let w =
(x + y + z)/3. Then w ∈ [0, π], and w = (x + y + z + w)/4. Hence by what
we’ve just done

4
√

sin x sin y sin z sin w ≤ sin w, 3
√

sin x sin y sin z ≤ sin w = sin

(
x + y + z

3

)
,

and there is equality iff x = y = z = w.

Exercise 9 More generally, prove that if x1, x2, . . . , x8 ∈ [0, π], then

p
√

sin x1 sin x2 · · · sin xp ≤ sin

(
x1 + x2 + · · ·+ xp

p

)
, p = 1, 2, . . . , 8,

with equality iff x1 = x2 = · · · = xp.

As a consequence , we have the following theorems.

Theorem 1 In any triangle ABC,

sin A sin B sin C ≤ 3
√

3

8
.

Moreover, the inequality is strict unless ABC is equilateral.

Proof. By Lemma 2,

sin A sin B sin C ≤
(

sin
A + B + C

3

)3

= sin3 π

3
= (

√
3

2
)3 =

3
√

3

8
,

and there is equality iff A = B = C = π/3.

Corollary 1

∆ ≤
√

3 3
√

(abc)2

4
,

with equality iff ABC is equilateral.

Proof. For, by Exercise 5,

sin A sin B sin C =
8∆3

(abc)2
,
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whence

8∆3

(abc)2
≤ 3

√
3

8
, ∆3 ≤ 3

√
3(abc)2

64
=

(√
3

4

)3

(abc)2,

with equality iff ABC is equilateral.
So, knowing the side lengths of a triangle we can obtain a crude upper

estimate of its area.
Taking account of the fact that the geometric mean of three positive

numbers doesn’t exceed their arithmetic mean, we can deduce a relationship
between the area of a triangle and its perimeter.

Corollary 2 (Isoperimetric inequality)

∆ ≤ s2

3
√

3
,

with equality iff ABC is equilateral.

Proof. For, 3
√

(abc)2 = ( 3
√

abc)2, and

3
√

abc ≤ a + b + c

3
=

2s

3
,

with equality if a = b = c.
This tells us that among all triangles with the same perimeter, the equilat-

eral triangle encloses the largest area. This fact extends to any convex poly-
gon. In particular, among all rectangles withe same perimeter, the square
encloses the largest area.

Exercise 10 Prove that in any triangle ABC,

∆ ≤ a2 + b2 + c2

4
√

3
,

with equality iff ABC is equilateral.

Theorem 2 Prove that in any triangle ABC,

sin
A

2
sin

A

2
sin

A

2
≤ 1

8
,

with equality iff ABC is equilateral.
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Proof. Once more by Lemma 2,

sin
A

2
sin

A

2
sin

A

2
≤
(

sin
A + B + C

6

)3

sin3 π

6
=

1

8
,

with equality iff A = B = C = π/3.

Corollary 3 (Euler) In any triangle ABC, 2r ≤ R, with equality iff ABC
is equilateral.

Proof. For
r

R
=

4∆r

abc
= 4 sin

A

2
sin

B

2
sin

C

2
≤ 1

2
.

Exercise 11 Prove that

r ≤ abc

8∆
.

Exercise 12 Let x, y ∈ [0, π/2]. Prove that

√
cos x cos y ≤ cos

x + y

2
,

with equality iff x = y.

Exercise 13 Let x, y, z ∈ [0, π/2]. Prove that

√
cos x cos y cos z ≤ cos

x + y + z

3
,

with equality iff x = y = z.

Exercise 14 Let ABC be a triangle. Prove that

cos
A

2
cos

B

2
cos

C

2
≤ 3

√
3

8
,

with equality iff ABC is equilateral.

Exercise 15 Prove that, in any triangle ABC,

∆ ≤ 3
√

3abc

4(a + b + c)
,

with equality iff ABC is equilateral.

11


