TWENTY SECOND IRISH MATHEMATICAL OLYMPIAD

Saturday, 9 May 2009

Second Paper

Time allowed: Three hours.

1. Let p(x) be a polynomial with rational coefficients. Prove that there exists a positive integer n such that the polynomial q(x) defined by

$$q(x) = p(x+n) - p(x)$$

has integer coefficients.

2. For any positive integer n define

$$E(n) = n(n+1)(2n+1)(3n+1)\cdots(10n+1).$$

Find the greatest common divisor of E(1), E(2), E(3), ..., E(2009).

- 3. Find all pairs (a, b) of positive integers, such that $(ab)^2 4(a+b)$ is the square of an integer.
- 4. At a strange party, each person knew exactly 22 others.

For any pair of people X and Y who knew one another, there was no other person at the party that they both knew.

For any pair of people X and Y who did not know one another, there were exactly 6 other people that they both knew.

How many people were at the party?

5. In the triangle ABC we have |AB| < |AC|. The bisectors of the angles at B and C meet AC and AB at D and E respectively. BD and CE intersect at the incentre I of $\triangle ABC$.

Prove that $\angle BAC = 60^{\circ}$ if and only if |IE| = |ID|.

Solutions

1. Proposed by Stephen Buckley.

Solution

Each term in p(x) is of the form $a_i x^i$, where a_i is rational. Expanding $a_i x^i - a_i (x+k)^i$, we see that k is a factor in all terms. Thus it suffices to pick k to equal the LCM of the denominators of the numbers a_i .

2. Proposed by Marius Ghergu.

Solution

Let *m* be the g.c.d. of $E(1), E(2), E(3), \dots, E(2009)$.

Since $m|E(1) = 2 \cdot 3 \cdot \ldots \cdot 11$, it follows that any prime divisor of m is less than or equal to 11. Let p be a prime number such that p|m. Since $p \leq 11 < 2009$, it follows that $m|E(p) = p(p+1)(2p+1)(3p+1)\cdots(10p+1)$. Remark that $p+1, 2p+1, 3p+1, \ldots, 10p+1$ are relatively prime to p, so E(p) (and thus m) is divisible by p but not by p^2 . We have thus proved that m is not divisible by the square of any prime number.

Since $m|E(1) = 2 \cdot 3 \cdot \ldots \cdot 11$, it follows that *m* divides the product of all prime numbers less than or equal to 11, that is, m|2310.

To show that m = 2310 it is enough to prove that for all $n \ge 1$, the number E(n) is divisible by 2310.

Let $n \ge 1$. Then, one of the numbers n or n + 1 is divisible by 2, so 2|E(n). Similarly, one of the numbers n, n+1, 2n+1 is divisible by 3 so 3|E(n). Then, one of the numbers n, n+1, 2n+1, 3n+1, 4n+1 is divisible by 5 which yields 5|E(n). In the same manner we obtain 7|E(n) and 11|E(n). Therefore E(n) is a multiple of $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 = 2310$ and so, the g.c.d. is 2310.

3. Proposed by Bernd Kreussler.

Solution

If $(ab)^2 - 4(a + b) = x^2$ with positive integers a, b and an integer $x \ge 0$, we have x < ab. As $(ab)^2 - (ab - 1)^2 = 2ab - 1$ is odd, we even have $x \le ab - 2$. This implies $(ab)^2 - 4(a + b) \le (ab - 2)^2 = (ab)^2 - 4ab + 4$, from which we obtain

$$ab \le a+b+1. \tag{1}$$

After swapping a and b if necessary, we may assume $a \le b$. If $a \ge 3$, we get $ab \ge 3b \ge a + b + b > a + b + 1$ in contradiction to (1). Hence a = 2 or a = 1. If a = 1, we have $b^2 - 4(b+1) = x^2$, which is equivalent to (b-2-x)(b-2+x) = 8. Because (b-2-x) + (b-2+x) = 2b-4 is even and $b-2-x \le b-2+x$, the only possibility is b-2-x=2 and b-2+x=4. This yields (a,b)=(1,5) as the only possible solution with $1=a \leq b$.

If a = 2, we have $4b^2 - 4(b+2) = x^2$, which is equivalent to (2b - 1 - x)(2b - 1 + x) = 9. Here we have two possibilities. Either 2b - 1 - x = 2b - 1 + x = 3 or 2b - 1 - x = 1, 2b - 1 + x = 9. In the first case we obtain b = 2 and in the second b = 3. So we have shown that (a, b) = (2, 2) and (a, b) = (2, 3) are the only possible solutions with $2 = a \le b$.

A simple calculation verifies that the five pairs (1,5), (5,1), (2,2), (2,3) and (3,2) indeed satisfy the requirements of the problem.

4. Proposed by Tom Laffey.

Solution

Suppose there were n people at the party. For each person P_i at the party, let

$$S_i = \{j : P_i \text{ knows } P_j\}.$$

Fix *i*. We count the number of distinct pairs (j, k) such that $j \in S_i$ and $k \in S_j$. There are $22^2 = 484$ such pairs in all. There are 22 such pairs with k = i. Suppose $k \neq i$. Then P_k is one of the n - 22 - 1 people different from P_i that P_i does not know and there are 6 corresponding *j* for which we must include (j, k) in our count. Hence 484 = 22 + 6(n - 23) and n = 100.

5. Proposed by Jim Leahy.

Solution

Let $\angle BAC = 2\alpha, \angle CBA = 2\beta$ and $\angle ACB = 2\gamma$. Assume first that $2\alpha = \angle BAC = 60^{\circ}$. This implies $2\beta + 2\gamma = 120^{\circ}$, i.e. $\beta + \gamma = 60^{\circ}$. Hence, $\angle DIE = \angle BIC = 120^{\circ}$. Therefore, $\angle BAC + \angle DIE = 180^{\circ}$ and the quadrilateral EIDA is cyclic. As AI bisects $\angle BAC$, the chords EI and DI subtend angles of 30° at the circumference of the circumcircle of EIDA. This implies |IE| = |ID|.

Conversely, assume |IE| = |ID|. The bisector BD divides CA in the ratio |AB| : |BC|. This can easily be seen from the sine rule for the two triangles $\triangle BDA$ and $\triangle BCD$ and using that $\sin(180^\circ - x) = \sin(x)$.

Let |BC| = a, |CA| = b and |AB| = c. From $\frac{|CD|}{|DA|} = \frac{a}{c}$ and |CD| + |DA| = b we obtain obtain $|DA| = \frac{bc}{a+c}$. Similarly we get $|AE| = \frac{bc}{a+b}$. Because |CA| > |AB| by assumption, we have b > c and so $\frac{bc}{a+c} > \frac{bc}{a+b}$, hence |DA| > |AE|.

Let D' be the reflection of D in AI. Since |DA| > |AE|, D' will lie between E and B on AB. Then $\triangle AID \equiv \triangle AID'$, hence |ID'| = |ID| and $\angle ID'A = \angle ADI = 2\gamma + \beta$. Since |IE| = |ID| we have |IE| = |ID'| from which we get $\angle D'EI = \angle ID'A = 2\gamma + \beta$. From $\angle IEA = 2\beta + \gamma$ we obtain now

$$180^{\circ} = \angle IEA + \angle D'EI = 2\beta + \gamma + 2\gamma + \beta = 3(\beta + \gamma) ,$$

which implies $\beta + \gamma = 60^{\circ}$. Since $\alpha + \beta + \gamma = 90^{\circ}$, we get $\alpha = 30^{\circ}$ and so $\angle BAC = 2\alpha = 60^{\circ}$.