
TWENTY SECOND IRISH MATHEMATICAL OLYMPIAD

Saturday, 9 May 2009

First Paper.

Time allowed: Three hours.

1. Hamilton Avenue has eight houses. On one side of the street are the houses
numbered 1,3,5,7 and directly opposite are houses 2,4,6,8 respectively. An
eccentric postman starts deliveries at house 1 and delivers letters to each of
the houses, finally returning to house 1 for a cup of tea. Throughout the
entire journey he must observe the following rules. The numbers of the houses
delivered to must follow an odd-even-odd-even pattern throughout, each house
except house 1 is visited exactly once (house 1 is visited twice) and the postman
at no time is allowed to cross the road to the house directly opposite. How
many different delivery sequences are possible?

2. Let ABCD be a square. The line segment AB is divided internally at H
so that |AB|.|BH| = |AH|2. Let E be the mid point of AD and X be the
midpoint of AH. Let Y be a point on EB such that XY is perpendicular to
BE. Prove that |XY | = |XH|.

3. Find all positive integers n for which n8 + n + 1 is a prime number.

4. Given an n-tuple of numbers (x1, x2, . . . , xn) where each xi = +1 or −1, form
a new n-tuple

(x1x2, x2x3, x3x4, . . . , xnx1),

and continue to repeat this operation. Show that if n = 2k for some integer
k ≥ 1, then after a certain number of repetitions of the operation, we obtain
the n-tuple

(1, 1, 1, . . . , 1) .

5. Suppose a, b, c are real numbers such that a + b + c = 0 and a2 + b2 + c2 = 1.
Prove that

a2b2c2 ≤ 1
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,

and determine the cases of equality.



Solutions

1. Proposed by Gordon Lessells.

Considering the order in which the houses 1,2,3,4 are visited we have six pos-
sibilities

1234, 1243, 1324, 1342, 1423, 1432

For each of these we can find an ordering of 5678 which describes the order
in which the houses 5,6,7,8 are visited. In each case there turn out to be two
orderings which satisfy the criteria. Intertwining these with the ordering of
1234 gives a total of twelve delivery sequences as follows:

17283546, 18253647, 17254638, 18274536, 16382547, 18352746

16354728, 18364527, 16472538, 17452836, 16453827, 17463528

Alternatively,there are six choices for the second and eighth houses to be vis-
ited. Each of these gives rise to two possibilities.

2. Proposed by Jim Leahy

Let the square ABCD have length 2a. Let |AH| = x. Then

x2 = 2a(2a− x)

Hence
x2 + 2ax = 4a2

Solving we find x =
√

5− 1.
Observe that 4BXY and 4BEA are similar. Hence

|XY | =
|BX|√

5

=
3−√5 +

√
5−1
2√

5

=

√
5− 1

2

Hence |XH| = |XY |.



3. Proposed by Bernd Kreussler.

Let f(x) = x8 + x + 1. Numerical values get large very quickly:

f(1) = 3

f(2) = 259 = 7× 37

f(3) = 6565 = 5× 13× 101

f(4) = 65541 = 3× 7× 3121.

These numbers may suggest that f(n) will be a prime number only if n = 1.
To prove this, we try to factorise the polynomial x8 + x + 1. Progress can be
made if it is suspected that x2 + x + 1 is a factor. This can quickly be tested
by using a cubic root of unity ω 6= 1. It satisfies ω2 + ω + 1 = 0 and ω3 = 1,
hence ω8 = ω2 from which we directly see f(ω) = 0. Polynomial division gives
now easily the factorisation f(x) = (x2 + x + 1)(x6 − x5 + x3 − x2 + 1).

Another way to obtain this factorisation is the following. We write x8+x+1 =
x8 − x2 + x2 + x + 1 and observe

x8 − x2 = x2(x6 − 1) = x2(x3 + 1)(x3 − 1) = x2(x3 + 1)(x− 1)(x2 + x + 1).

This gives f(x) = x8 + x + 1 = (x2 + x + 1)
(
x2(x3 + 1)(x− 1) + 1

)
.

If n ≥ 2, we have n2 + n + 1 ≥ 7 and n2(n3 + 1)(n− 1) + 1 ≥ 37, hence f(n)
is not a prime number if n ≥ 2. As f(1) = 3 is a prime number, we conclude
that n = 1 is the only positive integer for which n8 + n + 1 is a prime number.

4. Proposed by Donal Hurley.

First Solution: Use induction on k. Result clear for k = 1. Assume it is
true for some k > 1 and now consider an arbitrary n-tuple (x1, x2, . . . , xn) of
length n = 2k+1. Since xi

2 = 1 for all i, the second iteration

(x1 x2
2 x3, x2 x3

2 x4, . . . , xn−1 xn
2 x1, xn x1

2 x2)

can be written as

(x1 x3, x2 x4, x3 x5, . . . , xn−1 x1, xn x2)



which is the result of the interlacing of the two (n
2
)-tuples

(x1 x3, x3 x5, . . . , xn−1 x1) and (x2 x4, x4 x6, . . . , xn x2) (∗∗).

The same rule can be used to obtain the fourth iteration of the original n-
tuple by interlacing the second iteration of the two (n

2
)-tuples of (∗∗), the

sixth iteration of the original by interweaving the third iterations etc.. Thus
2 j iterations (j ≥ 2) of the original n-tuple yields the same result as the
interlacing of the jth iterations of the two (n

2
)-tuples of (∗∗). But the induction

hypothesis guarantees that these iterations of the (∗∗) tuples consist only of
ones for sufficiently large j. Thus we conclude that, for j sufficiently large, 2 j
iterations of the original n-tuple gives the n-tuple

(1, 1, . . . , 1)

as required.

Second Solution: Throughout, we assume that all subscripts are read “mod-
ulo n”. For example, if n = 4, then x5 is the same as x1, x6 means x2, etc.
More generally, xn+i is to identified with xi.

Let (x1,r, x2,r, . . . , xn,r) be the rth iterate. So

(x1,0, x2,0, . . . , xn,0) = (x1, x2, . . . , xn),

(x1,1, x2,1, . . . , xn,1) = (x1x2, x2x3, . . . , xnx1),

(x1,2, x2,2, . . . , xn,2) = (x1x
2
2x3, x2x

2
3x4, . . . , xnx2

1x2)

etc...

Lemma: For all r ≥ 0,

xi,r =
r∏

j=0

x
(r

j)
i+j.

Proof: We can prove this by induction on r. The cases r = 0 and r = 1 are
clearly true. Now suppose that r ≥ 2 and that

xi,l =
l∏

j=0

x
(l

j)
i+j



for all l ≤ r − 1. Then

xi,r = xi,r−1xi+1,r−1

=
∏r−1

j=0 x
(r−1

j )
i+j

∏r−1
j=0 x

(r−1
j )

i+1+j

=
∏r−1

j=0 x
(r−1

j )
i+j

∏r
j=1 x

(r−1
j−1)

i+j

= xi

(∏r−1
j=1 x

(r−1
j )

i+j x
(r−1

j−1)
i+j

)
xi+r

= xi

(∏r−1
j=1 x

(r−1
j )+(r−1

j−1)
i+j

)
xi+r

= xi

(∏r−1
j=1 x

(r
j)

i+j

)
xi+r

=
∏r

j=0 x
(r

j)
i+j

as required. QED

Observe that

xi,n = xi

(n−1∏
j=1

x
(n

j)
i+j

)
xi+n =

n−1∏
j=1

x
(n

j)
i+j

since xixi+n = (xi)
2 = 1

Now, we complete the solution by proving...

Lemma. For all k ≥ 1 and 1 ≤ j ≤ 2k − 1, the binomial coefficient
(
2k

j

)
is

even.

Proof: There are various ways to prove this. For example, we can use the
fact that the power of 2 that divides m! is

⌊
m

2

⌋
+

⌊
m

22

⌋
+

⌊
m

23

⌋
+ . . .

Therefore, the power of 2 that divides
(
2k

j

)
is

2k−1 + · · ·+ 1−
(⌊

j

2

⌋
+ · · ·+

⌊
j

2k−1

⌋)
−

(⌊
2k − j

2

⌋
+ · · ·+

⌊
2k − j

2k−1

⌋)
(1)



However, the expression in (??) is strictly bigger than 0 since for all 1 ≤ j ≤
2k − 1 and 1 ≤ s ≤ k,

2k−s ≥
⌊

j

2s

⌋
+

⌊
2k − j

2s

⌋

and the inequality is strict for at least one s between 1 and k (this happens
whenever 2s does not divide j). QED

Thus, if n = 2k then xi,n = 1 for all i.

5. Proposed by Finbarr Holland.

First Solution. Since the result is trivial if one of a, b, c is zero, and not all
of the nonzero ones can have the same sign, we may suppose without loss of
generality that a, b > 0 and c < 0.

Then c = −(a + b), whence

1 = a2 + b2 + c2 = 2(a2 + ab + b2),

and so

a2 + ab + b2 =
1

2
.

Hence, by AM–GM,

3ab = ab + 2ab ≤ ab + a2 + b2 =
1

2
,

i.e., ab ≤ 1/6, with equality if and only if

a = b =
1√
6
.

It follows that

c2 = a2 + 2ab + b2 =
1

2
+ ab ≤ 1

2
+

1

6
=

2

3
,

with equality as before. So

a2b2c2 = (ab)2(c2) ≤ 1

36

2

3
=

1
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,



with equality if and only if

a = b =
1√
6
, c = − 2√

6
.

Finally, removing the sign restriction imposed at the outset, we see that the
result holds and that there is equality only when two of a, b, c are equal to
±1/

√
6 and the third is equal to ∓2/

√
6.

Second Solution. First of all,

0 = (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca),

i.e.,

ab + bc + ca = −1

2
,

and so a, b, c are the roots of the cubic

x3 − 1

2
x− abc = 0.

Since this cubic is in normal form x3 − px − q = 0, and the roots of this are
real, 27q2 ≤ 4p3, with equality if and only if two of the roots are equal, and
the third is the negative of one of these, (*)

we may deduce that

27(abc)2 ≤ 4(
1

2
)3 =

1

2
, a2b2c2 ≤ 1
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with equality as before.

Remark. Proof of (*). This follows from the following well-known statement
about the discriminant of a cubic in normal form:-

Suppose a, b, c are the roots of the cubic x3 − px− q. Then

(a− b)2(b− c)2(c− a)2 = 4p3 − 27q2.

Alternatively, an examination of the graph of a real cubic reveals that its
roots are real if and only if the product of its local extrema is nonnegative. A
calculus argument reveals that the extrema occur when x = ±

√
p/3. Hence

the requirement is that

(
p
√

p

3
√

3
− p

√
p√
3
− q)(−p

√
p

3
√

3
+

p
√

p√
3
− q) ≤ 0 ⇔ (−2p

√
p

3
√

3
− q)(

2p
√

p

3
√

3
− q) ≤ 0,



i.e.,

−4p3

27
+ q2 ≤ 0,

with equality if and only if 0 is either a local max or a local min, in which case
the cubic has a double root, etc..


