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The Principle of Induction: Let a be an integer, and let P (n)

be a statement (or proposition) about n for each integer n ≥ a.

The principle of induction is a way of proving that P (n) is true for

all integers n ≥ a. It works in two steps:

(a) [Base case:] Prove that P (a) is true.

(b) [Inductive step:] Assume that P (k) is true for some integer

k ≥ a, and use this to prove that P (k + 1) is true.

Then we may conclude that P (n) is true for all integers n ≥ a.

This principle is very useful in problem solving, especially when we

observe a pattern and want to prove it.

The trick to using the Principle of Induction properly is to spot how

to use P (k) to prove P (k+1). Sometimes this must be done rather

ingeniously!
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Problem 1. Prove that for any integer n ≥ 1,

1 + 2 + 3 + · · · + n =
n(n + 1)

2
.

Solution. Let P (n) denote the proposition to be proved. First let’s

examine P (1): this states that

1 =
1(2)

2
= 1

which is correct.

Next, we assume that P (k) is true for some positive integer k, i.e.

1 + 2 + 3 + · · · + k =
k(k + 1)

2
.

and we want to use this to prove P (k + 1), i.e.

1 + 2 + 3 + · · · + (k + 1) =
(k + 1)(k + 2)

2
.

Taking the LHS and using P (k),

1 + 2 + 3 + · · · + (k + 1) = (1 + 2 + 3 + · · · + k) + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2(k + 1)

2

=
(k + 1)(k + 2)

2

and thus P (k + 1) is true. This completes the proof.
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Problem 2. Find a formula for the sum of the first n odd numbers.

Solution. Note that this time we are not told the formula that we

have to prove; we have to find it ourselves! Let’s try some small

numbers and see if a pattern emerges:

1 = 1; 1 + 3 = 4; 1 + 3 + 5 = 9;

1 + 3 + 5 + 7 = 16; 1 + 3 + 5 + 7 + 9 = 25;

We conjecture (guess) that the sum of the first n odd numbers is

equal to n2. Now let’s prove this proposition using the principle of

induction; call it P (n).

Our statement P (n) is that

1 + 3 + 5 + 7 + · · · + (2n − 1) = n2 .

First we prove the base case P (1), i.e.

1 = 12

This is certainly true. Now we assume that P (k) is true, i.e.

1 + 3 + 5 + 7 + · · · + (2k − 1) = k2 .

and consider P (k + 1):

1 + 3 + 5 + 7 + · · · + (2k + 1) = (k + 1)2 .
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Taking the LHS and using P (k),

1 + 3 + 5 + · · · + (2k + 1) = (1 + 3 + 5 + · · · + (2k − 1)) + (2k + 1)

= k2 + (2k + 1)

= (k + 1)2 .

and thus P (k + 1) is true. This completes the proof.

Note. Find a US flag and see if you can use it to prove this result

another way which does not require induction. [Hint: Look at the

stars!]

Exercise 1. Show that for all n ≥ 1,

12 + 32 + 52 + · · · + (2n − 1)2 =
n(4n2 − 1)

3
.

Exercise 2. Show that for all n ≥ 1, we have f(n) = g(n), where

f(n) = 1 −
1

2
+

1

3
−

1

4
+ · · · +

1

2n − 1
−

1

2n

and

g(n) =
1

n + 1
+

1

n + 2
+

1

n + 3
+ · · · +

1

2n
.
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Problem 3. Show that 6 divides 8n − 2n for every positive integer

n.

Solution. We will use induction. First we prove the base case

n = 1, i.e. that 6 divides 81 − 21 = 6; this is certainly true.

Next assume that proposition holds for some positive integer k, i.e.

6 divides 8k − 2k. Let’s examine 8k+1 − 2k+1:

8k+1 − 2k+1 = 8 · 8k − 2 · 2k

= 6 · 8k + 2 · 8k − 2 · 2k

= 6 · 8k + 2 ·
(

8k − 2k
)

.

Now since 6 divides 8k −2k (by assumption), and 6 certainly divides

6·8k, it follows that 6 divides 8k+1−2k+1. Therefore by the principle

of induction, 6 divides 8n − 2n for every positive integer n.

Exercise 3. For every n ≥ 1, define

S(n) =
n5

5
+

n4

2
+

n3

3
−

n

30
.

Show that S(n) is an integer for every n ≥ 1.
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Problem 4. n ≥ 1 circles are given in the plane. They divide the

plane into regions. Show that it is possible to colour the plane using

two colours, so that no two regions with a common boundary line

are assigned the same colour.

Solution. Call the proposition P (n). Let the two colours be B and

W . For n = 1, the result P (1) is clear; if there is only one circle,

we may colour the inside B and the outside W , and this colouring

satisfies the conditions of the problem.

Assume the result P (n) holds for n = k circles; so we know that

for any k circles there is a colouring which satisfies the conditions

of the problem. An example for 3 circles is shown below.

C1

C2

C3

B

B

B

B

W

W

W

W
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Next consider k + 1 circles {C1, C2, · · · , Ck+1}. Ignoring the circle

Ck+1, we now have k circles {C1, C2, · · · , Ck}. By the P (k) assump-

tion, there is a colouring of the plane which satisfies the conditions

of the problem; we colour the plane according to this colouring.

Now we add the circle Ck+1 back into the picture, as shown below

for the example at hand:

C1

C2

C3

B

W

W

B

W

B

B

B

W
B

W

W

C4

B

To obtain a new colouring, we do the following:

(a) for any region which lies inside Ck+1, do not change its colour.

(b) for any region which lies outside Ck+1, recolour it into the op-

posite colour.
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The result of this colouring is shown below for the example at hand:

C1

C2

C3

W

W

W

W

W

W

W

B

B

B
B

B

B

C4

Now we may check that the new colouring works:

(i) two neighbouring regions whose boundary lies inside Ck+1 have

different colours (by P (k) assumption);

(ii) two neighbouring regions whose boundary lies outside Ck+1 have

different colours (by P (k) assumption, and the fact that we re-

coloured both colours on either side of the boundary);

(iii) two neighbouring regions whose boundary lies on Ck+1 have

different colours (due to the fact that these colours were the same

initially, and one of them was then recoloured).

This shows that P (k+1) is true, and so by the principle of induction,

the proof follows.
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Problem 5. 2n points are given in space, where n ≥ 2. Altogether

n2+1 line segments (‘edges’) are drawn between these points. Show

that there is at least one set of three points which are joined pairwise

by line segments (i.e. show that there exists a triangle).

Solution. The proposition (let’s call it P (n)) holds for n = 2

(why?). Assume that the proposition P (n) is true for n = k, i.e.

that if 2k points are joined together by k2+1 edges, there must exist

a triangle. Now consider P (k + 1): here we have 2(k + 1) = 2k + 2

points, which are connected by (k + 1)2 + 1 = k2 + 2k + 2 edges.

Take a pair of points A, B which are joined by an edge (there must

be such a pair, otherwise there are no edges connecting any of the

points!). The remaining 2k points form a set which we will call S.

Let’s focus on the set S for the moment. If there were at least

k2 + 1 edges in S, then there would have to be a triangle in here

(using the P (k) assumption). Of course there could be ≤ k2 edges

in S; let’s suppose this is the case. But if this were true, it would

mean that there are at least 2k + 2 edges in the other part of the

graph, i.e. connecting A and B to each other and to the points

in S. Discounting the edge AB gives at least 2k + 1 edges which

connect from A or B into S. But we notice that if P is a point in

S, then P can be connected either to A or B, but not both (or a

triangle PAB would be formed!). Therefore the maximum number
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of edges connecting from A or B into S (without forming a triangle)

is 2k. This contradiction proves that P (k + 1) must be true.

Note. If we have 2n points and exactly n2 edges, it is possible

to avoid making a triangle. This is done by breaking the set of

points into two subsets X and Y which contain n points each, then

connecting every point in X to every point in Y . This is illustrated

below for the case n = 4.

5

6

7

8

3

2

1

4


