
8. Lemoine Point and Circles.

Theorem 1 In a triangle ABC the distances from the Lemoine point
L to the sides are in the ratio

αa, αb, αc,

where α =
2 area(ABC)

a2 + b2 + c2
and a, b, c denote the lengths of the sides BC, CA

and AB, respectively (Figure 1).

Figure 1:

Proof By Grebe’s theorem (Theorem 6 of Set 7), if LA, LB and LC

are the feet of perpendiculars from the Lemoine point L to the sides BC, CA
and AB, we have

|LLA|
a

=
|LLB|

b
=
|LLC |

c
= α, say.

Thus |LLA| = αa, |LLB| = αb and |LLC | = αc.
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Furthermore, if S = area(ABC), then

2S = 2 area(LBC) + 2 area(LCA) + 2 area(LAB)

= a|LLA|+ b|LLB|+ c|LLC |.
Thus

2S = a(αa) + b(αb) + c(αc)

= α(a2 + b2 + c2)

giving α =
2S

a2 + b2 + c2
. Result follows.

Theorem 2 The sides of the Lemoine’s pedal triangle are

2αma, 2αmb and 2αmc,

where ma,mb and mc are the lengths of the medians from the vertices A,B
and C respectively (Figure 2) and

α =
2 area(ABC)

a2 + b2 + c2
.

Proof Since ALBLLC is a cyclic quadrilateral

L̂CLLB = π − Â.

Applying the cosine rule to the side LCLB of the triangle LLCLB.

Figure 2:
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|LCLB|2 = |LLC |2 + |LLB|2 − 2|LLC |.|LLB| cos(L̂CLLB)

= α2c2 + α2b2 − 2α2bc cos(π − Â)

= α2(b2 + c2 + 2bc cos(Â)

= α2(b2 + c2 + 2bc(
b2 + c2 − a2

2bc
))

= α2(2(b2 + c2)− a2)

= α2(4m2
a), by the median property

where ma is the length of the median from the vertex A.

Thus |LCLB| = 2αma, as required. Similarly show |LBLA| = 2αmc and
|LALC | = 2αmb. ¤

Figure 3:

Next we derive some inequalities involving the ex-
pansion a2 + b2 + c2 and S = area(ABC).

Let X, Y and Z be points of the sides BC, CA and
AB of the triangle ABC (Figure 3). In set 7 we
considered the function

f(X,Y, Z) = |XY |2 + |Y Z|2 + |ZX|2

and proved that this has a minimum from the
Lemoine point L to the sides, i.e.

f(X,Y, Z) ≥ f(LA, LB, LC)

= 4α2(m2
a + m2

b + m2
c), by theorem 2 above

= 4α2(
3

4
)(a2 + b2 + c2), since m2

a =
b2 + c2

2
− a2

4
etc

= 3α2(a2 + b2 + c2)

=
12 S2

a2 + b2 + c2
.

Now consider the following two particular cases.
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Figure 4:

Case 1. XY Z is the median triangle
A1B1C1 of the triangle ABC (Figure 4).

Then |A1B1| = c

2
, |B1C1| = a

2
and |C1A1| = b

2
. Thus

f(A1, B1, C1) = |A1B1|2 + |B1C1|2 + |C1A1|2

=
1

4
(a2 + b2 + c2)

and then, since f(A1, B1, C1) ≥ f(LA, LB, LC)

1

4
(a2 + b2 + c2) ≥ 12 S2

a2 + b2 + c2

which implies a2 + b2 + c2 ≥ 4
√

3.S.

Case 2. XY Z is the orthic triangle A2B2C2 (Figure 5). Since |B2C2| =
a cos(Â), |C2A2| = b cos(B̂) and |A2B2| = c cos(Ĉ) by Proposition 2 of Set 5,
then

f(A2, B2, C2) = a2. cos2(Â) + b2. cos2(B̂) + c2. cos2(Ĉ)

and so (a2 + b2 + c2)(a2. cos2(Â) + b2. cos2(B̂) + c2. cos2(Ĉ)) ≥ 12 S2.

Our next result gives us the area of the Lemoine pedal triangle.

Figure 5:

Theorem 3 The area of the Lemoine pedal triangle of a triangle ABC
is given by

12(area(ABC))2

(a2 + b2 + c2)2
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Figure 6:

Proof Let A1, B1, C1 be the midpoints of
the sides BC, CA and AB of a triangle ABC (Figure
6). By theorem 3 above the Lemoine pedal triangle
has sidelengths 2αma, 2αmb and 2αmc, where

α =
2 S

a2 + b2 + c2

and ma = |AA1|,mb = |BB1| and mc =
|CC1|.

In the triangle, G is the centroid and we extend
the median AA1 to a point X so that |GA1| =
|A1X|.

Now consider the triangle GXC. We claim that the lengths of the sides

are
2

3
times the lengths of the three medians of the triangle ABC.

Clearly

|GC| =
2

3
|CC1| =

2

3
mc, and

|GX| = 2|GA1| = 2(
1

3
|AA1|) =

2

3
ma.

Finally, in the triangle AXC, the points G and B1 are the midpoints of the
sides AX and AC, respectively. Thus

|XC| = 2|GB1| = 2(
1

3
|BB1|) =

2

3
mb.

This establishes the fact the claim about the lengths of the sides of the tri-
angle GXC.

Next, let W be the area of a triangle with sides of length ma,mb and mc.
Then

area(LALBLC) = 4α2W

and

area(GXC) =
4

9
W.
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But

area(GXC) = 2 area(GA1C) = 2(
1

6
area(ABC))

=
S

3
, whereS = area(ABC)

Thus
S

3
=

4

9
W so W =

3

4
W

Finally,

area(LALBLC) = 4α2W = 4α2(
3

4
S)

= 3α2S = 3S.
4 S2

(a2 + b2 + c2)2

=
12 S3

(a2 + b2 + c2)2
.

1 Lemoine Circles

Recall the following facts. Suppose X and Y are points on the sides AB and
AC of a triangle ABC, then

(i) if XY is parallel to BC (Figure 7), the midpoint of XY lies on the
median AA1, and

Figure 7:

(ii) if XY is antiparallel to BC (Figure 8), the midpoint of XY lies on the
midpoint of the symmedian AA′

1.
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Theorem 4 (First Lemoine Circle). The antiparallels to the sides of
a triangle passing through the Lemoine point generate six points on the sides
which are concyclic.

Figure 8:

Figure 9:

Proof Let B′C ′ be antiparallel
to BC, A′′B′′ be antiparallel to AB and
A′′′C ′′′ be antiparallel to AC. The L
(Lemoine point) lies on all the antiparal-
lels.

The point L is the midpoint of B′C ′

which is antiparallel to the side BC.
Similarly L is the midpoint of the an-
tiparallels A′′B′′ and A′′′C ′′′. Next we
claim that the triangle LB′A′′′ is isosce-
les.

Since B′C ′ is antiparallel to BC

L̂B′A′′′ = Ĉ,

and since C ′′′A′′′ is antiparallel to AC

L̂A′′′B′ = Ĉ

Thus

L̂B′A′′′ = L̂A′′′B′,

and so the triangle LB′A′′′ is isoceles, as claimed. Thus |LB′| = |LA′′′|. Since
L is the midpoint of B′C ′, A′′B′′ and A′′′C ′′′, it follows that
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|LA′′′| = |LB′| = |LB′′| = |LB′′′| = |LC ′| = |LA′′|.
Then the circle with L as centre and radius |LA′′′| passes through all six
points. ¤
Theorem 5 (Lemoine Second Circle) The parallels to the sides of a
triangle passing through the Lemoine point generate six points on the sides
which are concyclic.

Proof Let B′C ′ be parallel to BC, B′′A′′ parallel to AB and A′′′C ′′′

be parallel to AC.

Figure 10:

Considering the parallelogram LA′′′AA′′, the di-
agonals AL and A′′′A′′ bisect one another (Figure
10).

Thus A′′′A′′ is antiparallel to AB and B′B′′ is an-
tiparallel to AC.

Next we claim that A′′B′′B′A′′′ is a cyclic quari-
lateral.

̂B′′A′′A′′′ = Â′′A′′′A, sinceB′′A′′isparalleltoAB

= Ĉ, sinceA′′′A′′isantiparalleltoBC

̂B′′B′A′′′ = 180◦ − B̂′′B′B

= 180◦ − Ĉ, sinceB′B′′isantiparallel toAC

= 180◦ − ̂?B′′?A′′A′′′

If follows that A′′B′′B′A′′′ is a cyclic quarilateral. Similarly it can be shown
that A′′′A′′C ′C ′′′ is a cyclic quarilateral.

Since A′′′A′′ is antiparallel to BC and BC is parallel to B′C ′. Thus
A′′′A′′C ′B′ is a cyclic quarilateral. Thus

B′ ∈ C(A′′′A′′C ′), the circumcircle of A′′′A′′C ′

Since A′′′A′′C ′C ′′′ is cyclic, the point C ′′′ also belongs to C(A′′′A′′C ′). Finally
B′′ ∈ C(B′A′′′A′′) and C(B′A′′′A′′) = C(A′′′A′′C ′) so all six points lie on this
circle, as required.

8



Theorem 6 The centre of the second Lemoine circle is the midpoint
of the line joining the Lemoine point to the centre of the ninepoint circle.

Proof To be supplied by Sabin.

Theorem 7 (SCHÖHILOG) The line from the midpoint of a side of
a triangle to the midpoint of the altitude to the side that goes through the
Lemoine point L (Figure 11).

Figure 11:

Proof(Rigby)

Figure 12:

Let the tangents to the circumcircle of
the triangle ABC form a triangle XY Z as
shown in Figure 12. Then AX is a sym-
median and so L belongs to AX. Through
L draw the lines PQ,RS and TU paral-
lel to the sides Y Z, ZX and XY , respec-
tively.

First we claim that the six points P, U,R, Q, T, S
lie on a circle with centre L (in fact, the first
Lemoine circle of the triangle ABC).

Since PQ̂A = CÂY, since PQ‖ZY

= AĈY, since tangents|YC| = |YA|
= CB̂A, angle between chord and tangent

then PQ is antiparallel to BC. Similarly show that SR antiparallel to AC
and TU is antiparallel to AB. Claim now follows from theorem 4 above.
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Since SR and TU are diameters of this circle, STRU is a rectangle and
the sides TR and SU are perpendicular to UR and so to BC. In particular
the are parallel to the altitude through the vertex A.

Let AD be the altitude through A and let M be the midpoint of AD. Let F
and G be the points where the lines MB and SU intersect and where MC
and TR intersect (Figure 13).

Figure 13:

Since SU‖AD and M is the midpoint of AD and F is midpoint of SU .
Similarly G is the midpoint of TR. Then the line FG passes through the
centre of the circle containing the six points so L belongs to FG. Finally,
FG is parallel to BC so the line joining M to A1, the midpoint of BC, must
intersect FG in its midpoint, i.e. point L.
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