
7. Lemoine Point.

Figure 1:

Two lines AS and AT through the vertex A of an an-
gle are said to be isogonal if they are equally inclined to
the arms of Â, or equivalently, to the bisector of Â (Figure
1).

The isogonals of the medians of a triangle are called symmedians.
We will show in a little while that the symmedians are concurrent
and their point of concurrency is called the symmedian point. It
is also called the Lemoine point.

Figure 2:

As before, in a triangle ABC, the midpoint BC is denoted by
A1, the intersection of BC and the bisector of Â is A3 and then
the symmedian of AA1 will be AA′

1 (Figure 2). Thus

AA′
1 = SymAA3(AA1).

Figure 3:

Recall Steiner’s theorem which states that in a tri-
angle ABC, if AA1 and AA2 are isogonal (Figure 3),
then
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|AB|2
|AC|2 =

|BA1||BA2|
|CA1||CA2| .

We now apply this to get the following.

Theorem 1 A line AA′
1 in a triangle ABC

(Figure 4) is a symmedian if and only if

|BA′
1|

|CA′
1|

=
|AB|2
|AC|2 =

c2

b2
.

Figure 4:

Proof The line AA′
1 is a symmedian if AA1

is a median and

AA′
1 = SymAA3(AA1).

Then |BA1| = |CA1|, so on applying Steiner’s theorem, we get that AA′
1 is

a symmedian if and only if

|AB|2
|AC|2 =

|BA′
1||BA1|

|CA′
1||CA1| =

|BA′
1|

|CA′
1|

.

Remark It is well known that the bisector of an angle of a triangle
divides the opposite side into the ratio of the sides about the angle. Then,
be the above theorem, a symmedian does it in the ratio of the squares of the
sides.
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Figure 5:

We can now apply the previous result to
show that the symmedians are concurrent.

Theorem 2 Let AA′
1, BB′

1 and CC ′
1 be

the symmedians of a triangle. Then these lines
are concurrent at a point L called the Lemoine
point (Figure 5).

Proof An easy application of Ceva’s the-
orem and Theorem 1 above gives the result. We
have

|A′
1B|

|A′
1C|

=
c2

b2
,
|B′

1C|
|B′

1A
=

a2

c2
and

|C ′
1A|

|C ′
1B

=
b2

a2
.

Then, by Ceva’s theorem, the symmedians are
concurrent since the product of the ratios is 1.

Using van Aubel’s theorem we get the ratios in which L divides the sym-
medians AA′

1.

|LA|
|LA′

1|
=
|C ′

1A|
|C ′

1B|
+
|B′

1A|
|B′

1C|
=

b2

a2
+

c2

a2

=
b2 + c2

a2
.

Theorem 3 The tangents to the circumcircle C(ABC) of a triangle
ABC at two of its vertices meet on the symmedian from the third vertex.

Figure 6:

Proof Let the tangents to the circumcircles at the
points B and C meet at the point K. Join A to K and let A′′

1

be the point of intersection of BC and AK (Figure 6). We need
to show that AA′′

1 is the symmedian from the vertex A, i.e.

|BA′′
1|

|CA′′
1|

=
c2

b2
.
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Consider

|BA′′
1|

|CA′′
1|

=
area(ABA′′

1)

area(ACA′′
1)

=
area(BKA′′

1)

area(CKA′′
1)

=
area(ABA′′

1) + area(BKA′′
1)

area(ACA′′
1) + area(CKA′′

1)

=
area(ABK)

area(ACK)

=
|AB||BK| sin(AB̂K)

|AC||CK| sin(AĈK)
. . . (i).

Now make some observations. We have |KB| = |KC| since KB
and KC are tangents from K to C(ABC). Furthermore, using
the property that the angle between a tangent and a chord is
equal to the angle in the segment on the opposite side of the
chord, we have

KB̂C = KĈB = Â.

Thus
AB̂K = (Â + B̂),

so
sin(AB̂K) = sin(Ĉ),

and
AĈK = (Â + Ĉ),

so
sin(AĈK) = sin(B̂).

Thus, from (i) we have

|BA′′
1|

CA′′
1|

=
|AB| sin(Ĉ)

|AC| sin(B̂)

=
|AB|2
|AC|2 , by sine rule.

Then, by Theorem 1, AA′′
1 is symmedian and so AK is the extension of a

symmedian. ¤
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Figure 7:

In a triangle, the median is the locus of the mid-
points of the line segments joining points on two sides
and parallel to the third side (Figure 7). In the case of
symmedians, we take line segments antiparallel to the
third side. This is the next result.

Figure 8:

Theorem 4 In a triangle ABC, if M and N are
points on the sides AB and AC respectively, such that
MN is antiparallel to BC, then the midpoint P of MN
lies on the symmedian AA′

1 (Figure 8).

Proof Let AA3 be the bisector of the angle
Â. Points M ′ and N ′ on sides AC and AB, respectively
are images of M and N under reflection in the line AA3 (Figure 9),

Figure 9:

M ′ = SymAA3(M), N ′ = SymAA3(N).
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Then |AN | = |AN ′|, |AM | = |AM ′| and it follows that the triangles AN ′M ′

and ANM are congruent. Thus AN̂ ′M ′ = AN̂M = AB̂C, since MN is
antiparallel to BC. Thus N ′M ′ is parallel to BC. Then the midpoint of
M ′N ′ lies on the median AA1 and so the midpoint of MN will lie on the
symmedian AA′

1 since mapping SymAA3( ) maps midpoints of segments to
midpoints of images.

1 Properties of Lemoine Point.

Theorem 5 If X is a point on the symmedian from the vertex A of
a triangle ABC, then the distances from X to the sides AB and AC are in
the ratios of the lengths of these sides.

Figure 10:

Proof Let AA′
1 be the symmedian

from A and let X be a point on AA′
1.

Drop perpendiculars XX1 and XX2 to the
sides AB and AC respectively. Also, drop
perpendiculars A′

1X̃1 and A′
1X̃2 to the sides

AB and AC, respectively, from A′
1 (Figure

10).

We claim that

d(X, AB)

|AB| =
d(X, AC)

|AC| , i.e.
|XX1|
|AB| =

|XX2|
|AC| .

Consider
d(X, AB)

d(X, AC)
=

d(A′
1, AB)

d(A′
1, AC)

=
|BA′

1| sin B̂

|CA′
1| sin Ĉ

=
|AB|2 sin B̂

|AC|2 sin Ĉ

=
|AB|
|AC| ,

as required.

Theorem 6 (Grebe’s first.) If L is the Lemoine point of a triangle
ABC, then
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d(L,BC)

|BC| =
d(L,AC)

|AC| =
d(L,AB)

|AB| .

This follows immediately from Theorem 5 since L lies on all 3 symmedians.

Theorem 7 (Grebe’s second.) The point X in the plane of a triangle
ABC which minimisses the quantity

d2(X, BC) + d2(X, AC) + d2(X,AB)

is the Lemoine point.

Proof In proving this we shall apply the Cauchy-Schwarz inequal-
ity. Recall that if {a1, a2, . . . , an} and {b1, b2, . . . , bn} are sequences of real
numbers then

(
∑n

i=1 aibi)
2 ≤ (

∑n
i=1 a2

i )(
∑n

i=1 b2
i )

with equality if and only if
a1

b1

=
a2

b2

= · · · = an

bn

.

Figure 11:

Let X be a point of the plane and drop per-
pendiculars from X to the sides AB, BC and CA.
Let Xa, Xb and Xc be the feet of the perpendiculars
(Figure 11).

Consider a|XXa|+ b|XXb|+ c|XXc|
= 2 area(ABC),
if X is inside ABC.

Then by the Cauchy-Schwarz inequality,

4[area(ABC)]2 ≤ (a2 + b2 + c2){|XXa|2 + |XXb|2 + |XXc|2}
Thus

|XXa|2 + |XXb|2 + |XXc|2 ≥ 4(area(ABC))2

a2 + b2 + c2
,

with equality if and only if

|XXa|
a

=
|XXb|

b
=
|XXc

c
= constant,

and this is true if and only if X = L, the Lemoine point.

Theorem 8 (Rigby?) The Lemoine point of a triangle is the centroid
of its pedal triangle.
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Figure 12:

Proof Let the tangents to the circumcircle,
C(ABC), of the triangle ABC at the points B and C
meet at K. From K drop perpendiculars Ka, Kb and
Kc to the sides BC, AC(extended) and AB(extended)
(Figure 11). We claim that KKbKaKc is a parallelo-
gram.

First extend the line segment KcK beyond K to
a point L and extend KbK beyond K to a point
M .

Since KKcAKb is a cyclic quadrilateral then since exte-
rior angles are equal to interior opposites, we have

LK̂Kb = Â and MK̂Kc = Â.

The quadrilateral KKcBKa is cyclic so

KcB̂K = KcK̂aK (chord KcK)

and

LK̂Ka = KcB̂K (exterior equal to opposite interior).

The last equation can be written as

LK̂Kb + KbK̂Ka = KcK̂aK + KB̂Ka

= KcK̂aK + Â (angle between tangent and chord).

But LK̂ = Â so we get

KbK̂Ka = KcK̂aK.

Thus lines KcKa is parallel to KKb.
Similarly, by considering the cyclic quadrilateral

KKbCKa it can be shown that KcK̂Ka = KK̂aKb,

and so lines KcK and KaKb are parallel.

Thus KKbKaKc is a parallelogram, as claimed.

It follows that KKa bisects KcKb and so KKa passes through the midpoint
of KcKb.
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Figure 13:

Now drop perpendicular lines from the Lemoine
point L to the sides BC, CA and AB. Let La, Lb

and Lc be the feet of these perpendiculars (Figure
13).

Clearly LLc is parallel to KKc and LLb is parallel to
KKb.

The triangles ALcL and AKcK are similar so

ALc

AKc

=
AL

AK
.

The triangle ALLb and AKKb are similar so

AL

AK
=

ALb

AKb

.

Thus, combining both equalities,

ALc

AKc

=
ALb

AKb

.

Thus LcLb is parallel to KcKb.

So we have that the triangles LcLbL and KcKbK are similar.

Since KKa is parallel to LLa and KKa is a median of the triangle KKcKb,
then LaL, when extended, is a median of the triangle LLcLb. Thus L lies on
the median of the triangle LaLbLc from the vertex La. Similarly it can be
shown that L also lies on the other medians of the triangle LaLbLc.
Result follows since LaLbLc is pedal triangle of the point L. ¤

Figure 14:

Recall that if ABC is a triangle X, Y, Z are points
of the sides BC, CA and AB, then the perimeter of
the triangle XY Z is a minimum if XY Z is the or-
thic triangle. Now suppose we wish to minimise the
quantity

|XY |2 + |Y Z|2 + |ZX|2.

9



The next theorem tells us when that is done.

Theorem 9 If X,Y and Z are 3 points on the
sides BC, CA and AB, respectively, then the quantity

|XY |2 + |Y Z|2 + |ZX|2.
is a minimum when XY Z is the pedal triangle of the
Lemoine point L.

Figure 15:

Proof First we show that there is a unique
set of points X0, Y0, Z0, on the sides such that

|X0Y0|2 + |Y0Z0|2 + |Z0X0|2

is a minimum. Let x = |BX|, y = |CY | and z = |AZ|
(Figure 15).

Now consider the function P (x, y, z) whose value is
the quantity

|ZY |2 + |Y X|2 + |XZ|2.
Then P (x, y, z) = z2 + (b− y)2 − 2z(b− y) cos(A)

= x2 + (c− z)2 − 2x(c− z) cos(B)
= y2 + (a− x)2 − 2y(a− x) cos(C)

= 2(x2 + y2 + z2) + (a2 + b2 + c2)− 2by − 2cz − 2ax
−2bz cos(A)− 2cx cos(B)− 2ay cos(C)
+2yz cos(A) + 2yx cos(B) + 2xz cos(C)

= 2(x2 + y2 + z2) + (a2 + b2c2)
+2{2xy cos(C) + 2yz cos(A) + 2zx cos(B)}
−2b(y + z cos(A))− 2c(z + x cos(B)) + 2a(x + y cos(C)).

Figure 16:

Since P (x, y, z) represents a sphere or an ellip-
soid then there exists a unique solution (x0, y0, z0)
which minimises P (x, y, z). This gives correspond-
ing points X0, Y0, Z0 on the sides of the triangle
XY Z (Figure 16).
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Now let X0Y0Z0 be the triangle which minimises
|X0Y0|2 + |Y0Z0|2 + |Z0X0|2.

Let G′ be the centroid of X0Y0Z0 and X0X
′
0 be the

median from the point X0.

By the median property of triangles

|X0Z0|2 + |X0Y0| = 2|X0X
′
0|2 + 2|X ′

0Z0|2 (use cosine rule.)
= 2|X0X

′
0|2 + |Z0Y0|2/2.

Thus |Z0Y0|2 + |Z0X0|2 + |X0Y0|2 = 2|X0X
′
0|2 +

3

2
(|Z0Y0|2).

This is minimised if X0X
′
0 is perpendicular to the side BC. Similarly we

need the other two medians of X0Y0Z0 to be perpendicular to the other two
sides of the triangle. Thus the centroid G′ of X0Y0Z0 has X0Y0Z0 as its
pedal triangle. It follows that G′ is the Lemoine point L of the triangle
ABC. Result follows.
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