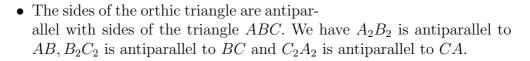
5. Orthic Triangle.

Let ABC be a triangle with altitudes AA_2, BB_2 and CC_2 . The altitudes are concurrent and meet at the orthocentre H (Figure 1). The triangle formed by the feet of the altitudes, $A_2B_2C_2$ is the orthic triangle.

<u>Remarks</u> There are several cyclic quadrilaterals :

- $AC_2HB_2, BC_2HA_2, CA_2HB_2$ are cyclic.
- BCB_2C_2 , ACA_2C_2 , ABA_2B_2 are cyclic.



Proposition 1 If ABC is an acute triangle, then the angles of the triangle $A_2B_2C_2$ are

$$180^{\circ} - 2\hat{A}, 180^{\circ} - 2\hat{B} \text{ and } 180^{\circ} - 2\hat{C}.$$

Proof

Since ACA_2C_2 is cyclic, then

$$C_2\widehat{A}_2B = 180^\circ - C_2\widehat{A}_2C = \widehat{A}.$$

Since	ABA_2B_2 is cyclic,
then	$B_2\widehat{A}_2C = 180^\circ - B\widehat{A}_2B = \widehat{A}.$
Thus	$C_2\widehat{A_2}B_2 = 180^\circ - 2\widehat{A}.$

Similarly, for the other two angles of $A_2B_2C_2$.

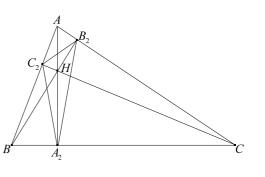


Figure 1:

Proposition 2 The lengths of the sides of the orthic triangle are $R\sin(2A) = a\cos(A), R\sin(2B) = b\cos(B)$ and $R\sin(2C) = c\cos(C)$, where R is the circumradius of the triangle ABC. Again, ABC is an acute triangle.

Proof Since the points $A_2B_2C_2$ lie on the ninepoint circle, the the circumcircle of $A_2B_2C_2$ has circumradius $R_{A_2B_2C_2}$ which is one half of R.

We now apply the sine rule to $A_2B_2C_2$. Then

$$\frac{|B_2C_2|}{\sin(\widehat{A}_2)} = 2R_{A_2B_2C_2},$$

and so
$$\frac{|B_2C_2|}{\sin(180^\circ - 2A)} = 2.\frac{R}{2},$$
$$|B_2C_2| = R\sin(2\widehat{A}) = 2R\sin(\widehat{A})\cos(\widehat{A})$$
$$= a\cos(\widehat{A}).$$

<u>Remark</u> In general, the side lengths of $A_2B_2C_2$ are

 $a|\cos(A)|, b|\cos(B)|$ and $c|\cos(C)|$.

<u>Notation</u> If ABC is a triangle, we denote the area of ABC by S(ABC).

Proposition 3 The area of $A_2B_2C_2$ is given by

$$S(A_2B_2C_2) = \frac{R^2}{2}\sin(2\widehat{A})\sin(2\widehat{B})\sin(2\widehat{C}).$$

Proof

We have
$$S(A_2B_2C_2) = \frac{|A_2C_2||A_2B_2|}{2}\sin(\widehat{A_2})$$

$$= \frac{R^2\sin(2\widehat{B})\sin(2\widehat{C})\sin(2\widehat{A})}{2}$$
$$= \frac{R^2}{2}\sin(2\widehat{A})\sin(2\widehat{B})\sin(2\widehat{C}).$$

Proposition 4 Let $r_{A_2B_2C_2}$ and $R_{A_2B_2C_2}$ denote the inradius and circumradius of the orthic triangle $A_2B_2C_2$. Then

$$r_{A_2B_2C_2} = 2R\cos(\widehat{A})\cos(\widehat{B})\cos(\widehat{C})$$
 and $R_{A_2B_2C_2} = \frac{R}{2}$.

Proof The value of $R_{A_2B_2C_2}$ follows from the fact that the ninepoint circle is the circumcircle of $A_2B_2C_2$ and its radius is one half of the circumradius of ABC.

For $r_{A_2B_2C_2}$ we have

$$\begin{aligned} r_{A_2B_2C_2} &= \frac{S(A_2B_2C_2)}{semiperimeter(A_2B_2C_2)} \\ &= \frac{(R^2/2)\sin(2\widehat{A})\sin(2\widehat{B})\sin(2\widehat{C})}{(R/2)(\sin(2\widehat{A}) + \sin(2\widehat{B}) + \sin(2\widehat{C}))} \\ &= R \, \frac{8\sin(\widehat{A})\sin(\widehat{B})\sin(\widehat{C})\cos(\widehat{A})\cos(\widehat{B})\cos(\widehat{C})}{4\sin(\widehat{A})\sin(\widehat{B})\sin(\widehat{C})} \\ &= 2R\cos(\widehat{A})\cos(\widehat{C}). \end{aligned}$$

Proposition 5 If $A_2B_2C_2$ is the orthic triangle of a triangle ABC and H is the orthocentre of ABC (Figure 2), then

(i) H is the incentre of $A_2B_2C_2$, and

(ii) A, B and C are the centres of the excribed triangles.

Proof

(i) Since BA_2HC_2 is cyclic, $C_2\widehat{A}_2H = C_2\widehat{B}H = A\widehat{B}H.$ Since CA_2HB_2 is cyclic, $H\widehat{A}_2B_2 = H\widehat{C}B_2 = H\widehat{C}A.$ Since BCB_2C_2 is cyclic, $C_2\widehat{B}B_2 = C_2\widehat{C}B_2$

i.e. $A\widehat{B}H = H\widehat{C}A.$ Thus $C_2\widehat{A}_2H = H\widehat{A}_2B_2$

i.e. AA_2 is the bisector of the angle at A_2 .

Similarly, BB_2 and CC_2 bisect the angles at B_2 and C_2 . Thus the point H is the incentre of the triangles $A_2B_2C_2$.

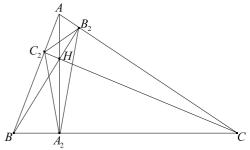


Figure 2:

(ii) Since C_2A and B_2A are perpendicular to the internal bisectors C_2H and B_2H , then the point A is where the external angle bisectors meet. Furthermore, A lies on the internal bisector HA_2 of the angle at A_2 . Thus A is the centre of the escribed circle of $A_2B_2C_2$ which is externally tangent to the side B_2C_2 . Similarly for the other two vertices B and C.

Theorem 1 (Haghal) The perpendiculars from the vertices A, B and C to the sides B_2C_2, C_2A_2 and A_2B_2 are concurrent at the circumcentre O of the triangle ABC.

Proof Let TA be tangent to the circumcircle of ABC at the point A (Figure 3).

We have that B_2C_2 is antiparallel to the side BC and AT is antiparallel to BC (Step 1 of Feuerbach Theorem). Thus TA is parallel to BC. If O is the circumcentre of circumcircle of ABC, then AT is perpendicular to AO. Thus B_2C_2 is perpendicular to AO. Similarly show that BO is perpendicular to A_2C_2 and CO is perpendicular to A_2B_2 .

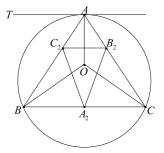


Figure 3:

Theorem 2 Among all inscribed triangles in a triangle ABC, the perimeter is minimized by the orthic triangle.

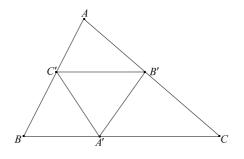


Figure 4:

Proof Let A'B'C' be inscribed in the triangle ABC (Figure 4).

Let A'' be the reflection of A' in the side ABand A''' be the reflection of A' on the side AC(Figure 5).

Then
$$|C'A'| = |C'A''|$$
 and
 $|B'A'| = |B'A'''|$

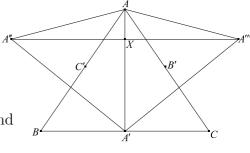


Figure 5:

Then if \mathcal{P} denotes the perimeter, we have

$$\mathcal{P}(A'B'C') = A'B' + B'C' + C'A' = |B'A'''| + |B'C'| + |C'A''| = |A'''B'| + |B'C'| + |C'A''| \geq |A'''A''|.$$

Now consider the triangle A''AA'''. We have

$$|AA''| = |AA'|,$$

 $|AA'''| = |AA'|,$
so $|AA''| = |AA'''|.$

We also have $A''\widehat{A}B = A'\widehat{A}B$ and $A'\widehat{A}C = A'''\widehat{A}C$. Thus $A''\widehat{A}A''' = 2\widehat{A}$.

Let γ be the angle $A\widehat{A''}A''' = A\widehat{A'''}A''$. If X is the point of point of intersection of the lines AA' and A''A''', then

Thus
$$\begin{aligned} \frac{|A''X|}{|A''A|} &= \cos(\gamma).\\ A''A'''| &= 2|A''X|\\ &= 2\cos(\gamma)|A''A|\\ &= 2\sin(\widehat{A})|A''A|, \end{aligned}$$

since $180^{\circ} = 2\gamma + 2\widehat{A}$ so $\gamma + \widehat{A} = 90^{\circ}$ and thus $\cos(\gamma) = \cos(90^{\circ} - \widehat{A}) = \sin(\widehat{A})$.

But
$$|A''A| = |AA'| \ge |AA_2|$$
, so
 $|A''A'''| \ge 2\sin(\widehat{A})|AA_3|$.

Thus, if A'B'C' is an inscribed triangle, with B' and C' fixed, perimeter is minimised if A is the point A_2 . Similarly the perimeter is further minimised by taking B' and C' to be the points B_2 and C_2 respectively. Result follows. **Theorem 3** If ABC is an acute triangle which is not isosceles and $A_2B_2C_2$ is the orthic triangle then the points A', B' and C', where the sides B_2C_2 and BC intersect, A_2C_2 and AC intersect and A_2B_2 and AB intersect, respectively, are collinear (Figure 6).

<u>Remark</u> The line containing these points is called the *orthic line* of the triangle ABC.

Proof If we are given two nonconcentric circles then the locus of points whose powers with respect to the circles is a line perpendicular to the line joining the centres of the circles. It is called the radical axis of the circles.

Since
$$BC_2B_2C$$
 is cyclic, then
 $|A'B_2|.|A'C_2| = |A'C||A'B|.$

If C is the circumcircle of ABC and C_9 is the ninepoint circle, thus

$$\rho_{\mathcal{C}}(A') = \rho_{\mathcal{C}_9}(A').$$

Similarly, $\rho_{\mathcal{C}}(B') = \rho_{\mathcal{C}_9}(B')$ and $\rho_{\mathcal{C}}(C') = \rho_{\mathcal{C}_9}(C')$.

Thus the 3 points A', B' and C' lie on the radical axis of the circles \mathcal{C} and \mathcal{C}_9 .

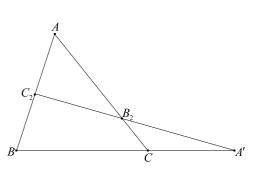


Figure 6: