Chapter 4. Feuerbach's Theorem

Let A be a point in the plane and k a positive number. Then in the previous chapter we proved that the inversion mapping with centre A and radius k is the mapping

$$Inv: \mathcal{P} \setminus \{A\} \to \mathcal{P} \setminus \{A\}$$

which is defined as follows. If B_1 is a point, then $Inv(B_1) = B_2$ if B_2 lies on the line joining A and B_1 and

$$|AB_1||AB_2| = k^2.$$

We denote this mapping by $Inv(A, k^2)$. We proved the following four properties of the mapping $Inv(A, k^2)$.

- (a) If A belongs to a circle $\mathcal{C}(O, r)$ with centre O and radius r, then $Inv(\mathcal{C}(O, r))$ is a line l which is perpendicular to OA.
- (b) If l is a line which does not pass through A, then Inv(l) is a circle such that l is perpendicular to the line joining A to the centre of the circle.
- (c) If A does not belong to a circle $\mathcal{C}(O, r)$, then

$$Inv(\mathcal{C}(O, r)) = \mathcal{C}(O, r)$$

with $r' = r \cdot \frac{k^2}{\rho(A, \mathcal{C}(O, r))}$

(d) If $Inv(B_1) = B_2$ and $Inv(C_1) = C_2$, where B_1 and C_1 are two points in the plane, then

$$|B_2C_2| = |B_1C_1| \cdot \frac{k^2}{|AB_1||AC_1|}$$

<u>Remark</u> Let A be an arbitrary point which does not belong to the circle $\mathcal{C}(O, r)$ with centre O and radius r and let $\rho_{\mathcal{C}}(A)$ be the power of A with respect to the circle $\mathcal{C} = \mathcal{C}(O, r)$. Then if Inv is the mapping with pole (centre) A and $k^2 = \rho_{\mathcal{C}}(A)$, i.e.

$$Inv := Inv(A, \rho_{\mathcal{C}}(A))$$

then $Inv(\mathcal{C}(O, r)) = \mathcal{C}(O, r)$, i.e. $\mathcal{C}(O, r)$ is invariant under the mapping Inv. This follows from the following observations. Since A does not belong to $\mathcal{C}(O, r)$, then $Inv(\mathcal{C}(O, r))$ is a circle with radius r' where

$$r' = r \frac{k^2}{\rho_{\mathcal{C}}(A)}$$
, by (c) above
= r , since $k^2 = \rho_{\mathcal{C}}(A)$

Furthermore, if P is any point of $\mathcal{C}(O, r)$ and P' = Inv(P), then

$$|AP||AP'| = \rho_{\mathcal{C}}(A).$$

Thus P' is also on the circle $\mathcal{C}(O, r)$, so the result follows.

Feuerbach's Theorem The nine point circle of a triangle is tangent to the incircle and the three excircles of the triangle.

We prove this using inversion. The proof is developed through a sequence of steps.

Step 1 Let ABC be a triangle and let Inv be the mapping $Inv(A, k^2)$ for some k > 0. If $\mathcal{C}(O, R)$ denotes the circumcircle of ABC, then

$$Inv(\mathcal{C}(ABC))$$

is a line L which is antiparallel to the line BC.

Proof Let O be the circumcentre of the triangle ABC and let Inv denote the mapping $Inv(A, k^2)$. From part (a) of the proposition listing the properties of inversion maps, $Inv(\mathcal{C}(ABC)) = B_1C_1$ where B_1, C_1 are images of B and C under Inv. Then the line through B_1 and C_1 is perpendicular to line AO (Figure 1).

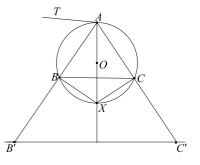


Figure 1:

Now let TA be tangent to $\mathcal{C}(ABC)$ at A. Then if X is the point of intersection of AO with $\mathcal{C}(ABC)$, we have $T\widehat{A}B = 90^{\circ} - B\widehat{A}X$

$$TAB = 90^{\circ} - BA2$$
$$= B\hat{X}A$$
$$= B\hat{C}A.$$

Since $TA \perp AO$ and $AO \perp B'C'$, then $TA \parallel B'C'$ so

$$T\widehat{A}B = A\widehat{B'}C'.$$

Thus $A\widehat{B'}C' = B\widehat{C}A$ and so B'C' is antiparallel to BC, as desired.

<u>Step 2</u> Let ABC be a triangle. The incircle C(I, r), with centre I and radius r, touches the sides BC, CA and AB at the points P, Q and R respectively (Figure 2). If $s = \frac{1}{2}(a+b+c)$ denotes the semiperimeter, we have

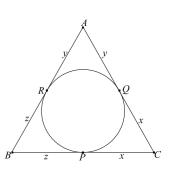
$$\begin{aligned} |CP| &= |CQ| = s - c, \\ |BP| &= |BR| = s - b, \\ |AR| &= |AQ| = s - a. \end{aligned}$$

Proof

Let

$$\begin{aligned} x &= |CP| = |CQ|, \\ y &= |AR| = |AQ|, \\ x &= |BR| = |BP|. \end{aligned}$$

Then s = x + y + z and a = x + z; b = x + y and c = y + z.



So |CP| = |CQ| = x = (x + y + z) - (y + z) = s - c. Similarly for the other lengths.

Step 3 Let ABC be a triangle and let $C(I_a, r_a)$ be the excircle touching the side BC and the sides AB and AC externally at the points P_a, R_a and Q_a respectively (Figure 3). Then

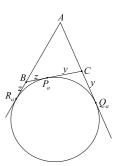
$$|BP_a| = s - c$$
 and $|CP_a| = s - b$.

Proof Let

$$\begin{split} |AR_a| &= |AQ_a| = x, \\ |CQ_a| &= |CP_a| = y, \\ |BP_a| &= |BR_a| = z. \end{split}$$

Then

$$\begin{aligned} x - y &= b, \\ x - z &= c, \\ y + z &= a. \end{aligned}$$



Adding, we get 2x = a + b + c so x = s.

From this	y = x - b = s - b,
SO	$ CP_a = CQ_a = s - b,$
and	z = x - c = s - c,
SO	$ BP_a = BR_a = s - c$, as required.

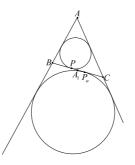


Figure 4:

Remark

If A_1 is the midpoint of the side BC, then

$$|A_1P| = |A_1P_a|$$
 (Figure 4).

This follows from the observation that

$$|BP| = s - b \text{ (Step 2)}$$
$$|CP_a| = s - b \text{ (Step 3)}$$

Then
$$|A_1P| = \frac{a}{2} - (s-b) = \frac{b-c}{2},$$

 $|A_1P_a| = \frac{a}{2} - (s-b) = \frac{b-c}{2}.$

Step 4 If ABC is a triangle and A_3 is a point on the side \overline{BC} where the bisector of the angle at A meets BC (Figure 5), then

$$|BA_3| = \frac{ac}{b+c} \text{ and } |CA_3| = \frac{ab}{b+c}.$$
$$\frac{|BA_3|}{|CA_3|} = \frac{area(ABA_3)}{area(ACA_3)} = \frac{|AB||AA_3|\sin(\frac{\widehat{A}}{2})}{|AC||AA_3|\sin(\frac{\widehat{A}}{2})} =$$

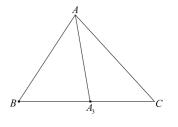


Figure 5:

 $\frac{|AB|}{|AC|} = \frac{a}{b}.$

Since
$$|BA_3| + |CA_3| = a$$
, then $\frac{|BA_3|}{a - |BA_3|} = \frac{c}{b}$.
Solve for $|BA_3|$ to get $|BA_3| = \frac{ac}{b+c}$.
Finally, $|CA_3| = a - \frac{ac}{b+c} = \frac{ab}{b+c}$.

Step 5 In a triangle ABC let A_1 be the midpoint of the side BC and let A_2 be the foot of the perpendicular from A to BC (Figure 6). Then

$$|A_1A_2| = \frac{b^2 - c^2}{2a}.$$

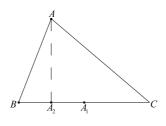


Figure 6:

Proof We have $b^{2} - c^{2} = |AA_{2}|^{2} + |A_{2}C|^{2} - |AA_{2}|^{2} - |A_{2}B|^{2}$ $= (|A_{2}C| + |A_{2}B|)(|A_{2}C| - |A_{2}B|)$ $= a\{|A_{1}A_{2}| + |A_{1}C| - |A_{1}B| + |A_{1}A_{2}|\}$ $= 2a|A_{1}A_{2}|.$ But the best of the second of the seco

Thus $|A_1A_2| = \frac{b^2 - c^2}{2a}$, as required.

Step 6 Let $\mathcal{C}(O, r)$ be a circle with centre O and radius rand let A be an arbitrary point not belonging to $\mathcal{C}(O, r)$. Consider the inversion with pole A and $k^2 = \rho_{\mathcal{C}}(A)$, the power of Awith respect to the circle $\mathcal{C}(O, r)$. Then the circle $\mathcal{C}(O, r)$ remains invariant under the inversion $Inv(A, \rho_{\mathcal{C}}(A))$.

Proof Denote by Inv the inversion $Inv(A, \rho_{\mathcal{C}}(A))$. Since A does not belong to $\mathcal{C}(O, r)$, then

$$Inv(\mathcal{C}(O,r))$$
 is a circle with radius r' where
$$r'=r.\frac{k^2}{\rho_{\mathcal{C}}}=r,$$

since we have $k^2 = \rho_{\mathcal{C}}(A)$.

Now choose a point B on $\mathcal{C}(O, r)$ and let B' = Inv(B). Then $|AB||AB'| = k^2 = \rho_{\mathcal{C}}(A)$. But this implies that B' is a point of $\mathcal{C}(O, r)$. Thus

$$Inv(\mathcal{C}(O, r)) = \mathcal{C}(O, r),$$

as required.

Step 7 In a triangle ABC let A_1, A_2, A_3 and P be the following points on the side BC; A_1 is the midpoint, A_2 is the foot of the altitude from A, A_3 is the point where the bisector of \widehat{A} meets BC, P is the foot of the perpendicular from the incentre Ito BC and so is the point of tangency of BC with the incircle (Figure 8).

Then
$$|A_1P|^2 = |A_1A_2||A_1A_3|$$

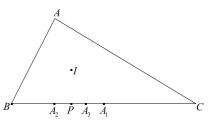


Figure 8:

Proof

We have
$$|A_1P| = |A_1B| - |BP|$$

 $= \frac{a}{2} - (s - b)$ (step 3)
 $= \frac{b - c}{2}$
 $|A_1A_2| = \frac{b^2 - c^2}{2a}$ (step 5)
 $|A_1A_3| = |BA_1| - |BA_3|$
 $= \frac{a}{2} - \frac{ac}{b+c}$ (step 4)
 $= \frac{a(b-c)}{2(b+c)}.$

It follows that

$$|A_1P|^2 = |A_1A_3||A_1A_2| = (\frac{b-c}{2})^2,$$

as required.

We now return to the proof of Feuerbach's theorem which states that the nine point circle C_9 of a triangle ABC is tangent to the incircle and the three escribed circles of the triangle.

Let A_1 be the midpoint of the side BC and let Pand P_a be the points of tangency of the incircle and the escribed circle drawn external to side BC, respectively (Figure 9). We consider the inversion mapping $Inv(A_1, k^2)$ where $k^2 = |A_1P|^2$ and we denote it by Inv.

Since P is the point of tangency of the side BC with the incircle $\mathcal{C}(I, r)$, then

$$|A_1P|^2 = \rho_{\mathcal{C}(I,r)}(A_1)$$

By step 6, it follows that

$$Inv(\mathcal{C}(I,r)) = \mathcal{C}(I,r)$$

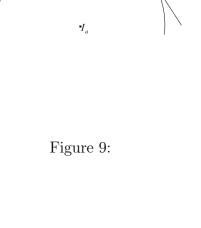
Since P_a is the point of tangency of the side BC with the escribed circle $C(I_a, r_a)$ and $|A_1P_a| = |A_1P|$, then $\rho_{C(I_a, r_a)}(A_1) = |A_1P_a|^2 = |A_1P|^2 = k^2$, then

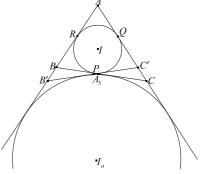
$$Inv(\mathcal{C}(I_a, r_a)) = \mathcal{C}(I_a, r_a).$$

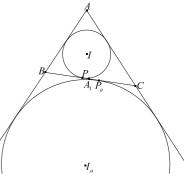
Thus $\mathcal{C}(I,r)$ and $\mathcal{C}(I_a,r_a)$ are both invariant under the mapping Inv. Now we consider the image of the nine-point circle under Inv. Since A_1 belongs to the nine-point circle \mathcal{C}_9 and A_1 is the pole of Inv, then $Inv(\mathcal{C}_9)$ is a line d. But \mathcal{C}_9 is the circumcircle of the triangle with vertices the midpoints A_1, B_1 and C_1 of the sides of the triangle ABC so the line d is antiparallel to the line B_1C_1 (step 1). Since $B_1C_1 ||BC$ then d is antiparallel to the side BC.

We also have that $|A_1A_2||A_1A_3| = |A_1P|^2$ (step 7) and since A_2 belongs to C_9 then d is a line which passes through A_3 , as $Inv(A_2) = A_3$.

Now let B'C' be the second common tangent of the two circles C(I, r) and $C(I_a, r_a)$. Since A_3 is the bisector of the angle at A, these common tangents intersect at A_3 (Figure 10). Now claim that $A\widehat{B}C = A\widehat{C'}B'$ and $A\widehat{B'}C' = A\widehat{C}B$. From this it follows that the second common tangent B'C' is antiparallel to the side BC. Since A_3







is on B'C' then it follows that the line d must be B'C', that is

$$Inv(\mathcal{C}_9) = \text{line } d.$$

Finally, since d is tangent to $\mathcal{C}(I,r)$ and $\mathcal{C}(I_a,r_a)$, then $\mathcal{C}_9 = (Inv)^{-1}(d)$ is tangent to $\mathcal{C}(I,r)$ and $\mathcal{C}(I_a,r_a)$. Thus \mathcal{C}_9 is tangent to the incircle and escribed circle external to the side BC. Similarly it can be shown that \mathcal{C}_9 is also tangent to the other two escribed circles.

It remains to show that the common tangents BC and B'C' are antiparallel.

Let P, Q and R be the points of tangency of the sides BC, CA and AB with the incircle $\mathcal{C}(I, r)$ of the triangle ABC. Let P' be the point of tangency of the second common tangent B'C' with the incircle $\mathcal{C}(I, r)$ (Figure 11).

The triangles AIR and AIQ are similar so $A\widehat{I}R = A\widehat{I}Q.$ The triangles A_3IP and A_3IP' are similar so $A_3\widehat{I}P = A_3\widehat{I}P'.$ Then $\widehat{DIR} = 180\% - (\widehat{AIR} + \widehat{AIR})$

Then $P\widehat{I}R = 180^{\circ} - (A\widehat{I}R + A_3\widehat{I}P)$ = $180^{\circ} - (A\widehat{I}Q + A_3\widehat{I}P')$ = $P'\widehat{I}Q.$

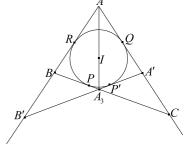


Figure 11:

Since the quadrilaterals PIRB and P'IQC' are cyclic, then

$$PBR = 180^{\circ} - PIR$$
$$= 180^{\circ} - P'\widehat{I}Q$$
$$= P'\widehat{C}Q,$$
i.e., $A\widehat{B}C = A\widehat{C}B'.$ Thus $B\widehat{C}A = 180^{\circ} - (\widehat{A} + A\widehat{B}C)$
$$= 180^{\circ} - (\widehat{A} + A\widehat{C}B')$$
$$= A\widehat{B}C'.$$

It follows that BC and B'C' are antiparallel, as required.

The point P', where the second tangent B'C' touches $\mathcal{C}(I, r)$ is called the *Feuerbach point*.