
Chapter 4. Feuerbach’s Theorem

Let A be a point in the plane and k a positive number. Then in the
previous chapter we proved that the inversion mapping with centre A and
radius k is the mapping

Inv : P\{A} → P\{A}
which is defined as follows. If B1 is a point, then Inv(B1) = B2 if B2 lies on
the line joining A and B1 and

|AB1||AB2| = k2.

We denote this mapping by Inv(A, k2). We proved the following four prop-
erties of the mapping Inv(A, k2).

(a) If A belongs to a circle C(O, r) with centre O and radius r, then
Inv(C(O, r)) is a line l which is perpendicular to OA.

(b) If l is a line which does not pass through A, then Inv(l) is a circle such
that l is perpendicular to the line joining A to the centre of the circle.

(c) If A does not belong to a circle C(O, r), then

Inv(C(O, r)) = C(O, r)

with r′ = r.
k2

ρ(A, C(O, r))

(d) If Inv(B1) = B2 and Inv(C1) = C2, where B1 and C1 are two points
in the plane, then
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|B2C2| = |B1C1|. k2

|AB1||AC1| .

Remark Let A be an arbitrary point which does not belong to the
circle C(O, r) with centre O and radius r and let ρC(A) be the power of A
with respect to the circle C = C(O, r). Then if Inv is the mapping with pole
(centre) A and k2 = ρC(A), i.e.

Inv := Inv(A, ρC(A))

then Inv(C(O, r)) = C(O, r), i.e. C(O, r) is invariant under the mapping
Inv. This follows from the following observations. Since A does not belong
to C(O, r), then Inv(C(O, r)) is a circle with radius r′ where

r′ = r
k2

ρC(A)
, by (c) above

= r, since k2 = ρC(A)

Furthermore, if P is any point of C(O, r) and P ′ = Inv(P ), then

|AP ||AP ′| = ρC(A).

Thus P ′ is also on the circle C(O, r), so the result follows.

Feuerbach’s Theorem The nine point circle of a triangle is tan-
gent to the incircle and the three excircles of the triangle.

We prove this using inversion. The proof is developed through a sequence of
steps.

Step 1 Let ABC be a triangle and let Inv be the mapping Inv(A, k2)
for some k > 0. If C(O, R) denotes the circumcircle of ABC, then

Inv(C(ABC))

is a line L which is antiparallel to the line BC.
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Figure 1:

Proof Let O be the circumcentre of the tri-
angle ABC and let Inv denote the mapping Inv(A, k2).
From part (a) of the proposition listing the proper-
ties of inversion maps, Inv(C(ABC)) = B1C1 where
B1, C1 are images of B and C under Inv. Then the line
through B1 and C1 is perpendicular to line AO (Figure
1).

Now let TA be tangent to C(ABC) at A. Then if X
is the point of intersection of AO with C(ABC), we have

TÂB = 90◦ −BÂX

= BX̂A

= BĈA.

Since TA⊥AO and AO⊥B′C ′, then TA‖B′C ′ so

TÂB = AB̂′C ′.

Thus AB̂′C ′ = BĈA and so B′C ′ is antiparallel to BC, as desired.

Figure 2:

Step 2 Let ABC be a triangle. The incircle C(I, r),
with centre I and radius r, touches the sides BC, CA and
AB at the points P, Q and R respectively (Figure 2). If s =
1

2
(a + b + c) denotes the semiperimeter, we have

|CP | = |CQ| = s− c,
|BP | = |BR| = s− b,
|AR| = |AQ| = s− a.

Proof Let

x = |CP | = |CQ|,
y = |AR| = |AQ|,
x = |BR| = |BP |.

Then s = x + y + z and a = x + z; b = x + y and
c = y + z.
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So |CP | = |CQ| = x = (x + y + z)− (y + z) = s− c.
Similarly for the other lengths.

Step 3 Let ABC be a triangle and let C(Ia, ra) be the excircle touching
the side BC and the sides AB and AC externally at the points Pa, Ra and
Qa respectively (Figure 3). Then

|BPa| = s− c and |CPa| = s− b.

Figure 3:

Proof Let

|ARa| = |AQa| = x,
|CQa| = |CPa| = y,
|BPa| = |BRa| = z.

Then

x− y = b,
x− z = c,
y + z = a.

Adding, we get 2x = a + b + c so x = s.

From this y = x− b = s− b,
so |CPa| = |CQa| = s− b,
and z = x− c = s− c,
so |BPa| = |BRa| = s− c, as required.

Figure 4:

Remark If A1 is the midpoint of the side BC, then
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|A1P | = |A1Pa| (Figure 4).

This follows from the observation that

|BP | = s− b (Step 2)
|CPa| = s− b (Step 3)

Then |A1P | = a

2
− (s− b) =

b− c

2
,

|A1Pa| = a

2
− (s− b) =

b− c

2
.

Figure 5:

Step 4 If ABC is a triangle and A3 is a point on the
side BC where the bisector of the angle at A meets BC (Figure
5), then

|BA3| = ac

b + c
and |CA3| = ab

b + c
.

Proof
|BA3|
|CA3| =

area(ABA3)

area(ACA3)
=
|AB||AA3| sin(

Â

2
)

|AC||AA3| sin(
Â

2
)

=

|AB|
|AC| =

a

b
.

Since |BA3|+ |CA3| = a, then
|BA3|

a− |BA3| =
c

b
.

Solve for |BA3| to get |BA3| = ac

b + c
.

Finally, |CA3| = a− ac

b + c
=

ab

b + c
.

Step 5 In a triangle ABC let A1 be the midpoint of the
side BC and let A2 be the foot of the perpendicular from A to
BC (Figure 6). Then

|A1A2| = b2 − c2

2a
.
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Figure 6:

Figure 7:

Proof We have

b2 − c2 = |AA2|2 + |A2C|2 − |AA2|2 − |A2B|2
= (|A2C|+ |A2B|)(|A2C| − |A2B|)

= a{|A1A2|+ |A1C| − |A1B|+ |A1A2|}
= 2a|A1A2|.

Thus |A1A2| = b2 − c2

2a
, as required.

Step 6 Let C(O, r) be a circle with centre O and radius r
and let A be an arbitrary point not belonging to C(O, r). Con-
sider the inversion with pole A and k2 = ρC(A), the power of A
with respect to the circle C(O, r). Then the circle C(O, r) remains invariant
under the inversion Inv(A, ρC(A)).

Proof Denote by Inv the inversion Inv(A, ρC(A)). Since A does not
belong to C(O, r), then

Inv(C(O, r)) is a circle with radius r′ where

r′ = r.
k2

ρC
= r,

since we have k2 = ρC(A).

Now choose a point B on C(O, r) and let B′ = Inv(B). Then |AB||AB′| =
k2 = ρC(A). But this implies that B′ is a point of C(O, r). Thus

Inv(C(O, r)) = C(O, r),

as required.
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Figure 8:

Step 7 In a triangle ABC let A1, A2, A3 and
P be the following points on the side BC;
A1 is the midpoint,
A2 is the foot of the altitude from A,
A3 is the point where the bisector of Â meets BC,
P is the foot of the perpendicular from the incentre I
to BC and so is the point of tangency of BC with the
incircle (Figure 8).

Then |A1P |2 = |A1A2||A1A3|
Proof

We have |A1P | = |A1B| − |BP |
=

a

2
− (s− b) (step 3)

=
b− c

2

|A1A2| =
b2 − c2

2a
(step 5)

|A1A3| = |BA1| − |BA3|
=

a

2
− ac

b + c
(step 4)

=
a(b− c)

2(b + c)
.

It follows that

|A1P |2 = |A1A3||A1A2| = (
b− c

2
)2,

as required.

We now return to the proof of Feuerbach’s theorem which states that the
nine point circle C9 of a triangle ABC is tangent to the incircle and the three
escribed circles of the triangle.
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Figure 9:

Let A1 be the midpoint of the side BC and let P
and Pa be the points of tangency of the incircle and
the escribed circle drawn external to side BC, respec-
tively (Figure 9). We consider the inversion mapping
Inv(A1, k

2) where k2 = |A1P |2 and we denote it by
Inv.

Since P is the point of tangency of the side BC with
the incircle C(I, r), then

|A1P |2 = ρC(I,r)(A1)

By step 6, it follows that

Inv(C(I, r)) = C(I, r)

Since Pa is the point of tangency of the side BC with
the escribed circle C(Ia, ra) and |A1Pa| = |A1P |, then
ρC(Ia,ra)(A1) = |A1Pa|2 = |A1P |2 = k2, then

Inv(C(Ia, ra)) = C(Ia, ra).

Thus C(I, r) and C(Ia, ra) are both invariant under the
mapping Inv. Now we consider the image of the nine-point circle under Inv.
Since A1 belongs to the nine-point circle C9 and A1 is the pole of Inv, then
Inv(C9) is a line d. But C9 is the circumcircle of the triangle with vertices
the midpoints A1, B1 and C1 of the sides of the triangle ABC so the line d is
antiparallel to the line B1C1 (step 1). Since B1C1‖BC then d is antiparallel
to the side BC.

We also have that |A1A2||A1A3| = |A1P |2 (step 7) and since A2 belongs
to C9 then d is a line which passes through A3, as Inv(A2) = A3.

Figure 10:

Now let B′C ′ be the second common tangent of the
two circles C(I, r) and C(Ia, ra). Since A3 is the bisec-
tor of the angle at A, these common tangents intersect
at A3 (Figure 10). Now claim that AB̂C = AĈ ′B′ and

AB̂′C ′ = AĈB. From this it follows that the second com-
mon tangent B′C ′ is antiparallel to the side BC. Since A3
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is on B′C ′ then it follows that the line d must be B′C ′,
that is

Inv(C9) = line d.

Finally, since d is tangent to C(I, r) and C(Ia, ra), then
C9 = (Inv)−1(d) is tangent to C(I, r) and C(Ia, ra).
Thus C9 is tangent to the incircle and escribed cir-
cle external to the side BC. Similarly it can be shown
that C9 is also tangent to the other two escribed cir-
cles.

It remains to show that the common tangents BC and
B′C ′ are antiparallel.

Figure 11:

Let P,Q and R be the points of tangency of the sides
BC,CA and AB with the incircle C(I, r) of the triangle
ABC. Let P ′ be the point of tangency of the second com-
mon tangent B′C ′ with the incircle C(I, r) (Figure 11).

The triangles AIR and AIQ are similar so
AÎR = AÎQ.

The triangles A3IP and A3IP ′ are similar so
A3ÎP = A3ÎP ′.

Then P ÎR = 180◦ − (AÎR + A3ÎP )

= 180◦ − (AÎQ + A3ÎP ′)
= P ′ÎQ.

Since the quadrilaterals PIRB and P ′IQC ′ are cyclic, then

PB̂R = 180◦ − P ÎR

= 180◦ − P ′ÎQ

= P ′Ĉ ′Q,

i.e., AB̂C = AĈ ′B′.

Thus BĈA = 180◦ − (Â + AB̂C)

= 180◦ − (Â + AĈ ′B′)
= AB̂′C ′.
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It follows that BC and B′C ′ are antiparallel, as required.

The point P ′, where the second tangent B′C ′ touches C(I, r) is called the
Feuerbach point.
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