
Chapter 1. The Medial Triangle
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Figure 1:

The triangle formed by joining the midpoints
of the sides of a given triangle is called the me-
dial triangle. Let A1B1C1 be the medial trian-
gle of the triangle ABC in Figure 1. The sides
of A1B1C1 are parallel to the sides of ABC and

half the lengths. So A1B1C1 is
1

4
the area of

ABC.

In fact

area(AC1B1) = area(A1B1C1) = area(C1BA1)

= area(B1A1C) =
1

4
area(ABC).

Figure 2:

The quadrilaterals AC1A1B1 and C1BA1B1 are parallelograms. Thus the
line segments AA1 and C1B1 bisect one another, and the line segments BB1

and CA1 bisect one another. (Figure 2)

Figure 3:

Thus the medians of A1B1C1 lie along the medians of ABC, so both tri-
angles A1B1C1 and ABC have the same centroid G.
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Now draw the altitudes of A1B1C1 from vertices A1 and C1. (Figure
3) These altitudes are perpendicular bisectors of the sides BC and AB
of the triangle ABC so they intersect at O, the circumcentre of ABC.
Thus the orthocentre of A1B1C1 coincides with the circumcentre of ABC.

Figure 4:

Let H be the orthocentre of the triangle ABC,
that is the point of intersection of the altitudes
of ABC. Two of these altitudes AA2 and BB2

are shown. (Figure 4) Since O is the orthocen-
tre of A1B1C1 and H is the orthocentre of ABC
then

|AH| = 2|A1O|
.

The centroid G of ABC lies on AA1 and

|AG| = 2|GA1|

. We also have AA2‖OA1, since O is the orthocentre of A1B1C1. Thus

HÂG = GÂ1O,

and so triangles HAG and GA1O are similar.

Since HÂG = GÂ1O,
|AH| = 2|A1O|,
|AG| = 2|GA1|.

Thus

AĜH = A1ĜO,

i.e. H, G and O are collinear. Furthermore, |HG| = 2|GO|.
Thus

Theorem 1 The orthocentre, centroid and circumcentre of any trian-
gle are collinear. The centroid divides the distance from the orthocentre to
the circumcentre in the ratio 2 : 1.
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The line on which these 3 points lie is called the Euler line of the triangle.

We now investigate the circumcircle of the medial triangle A1B1C1. First
we adopt the notation

C(ABC)

to denote the circumcircle of the triangle ABC.

Figure 5:

Let AA2 be the altitude of ABC from the vertex A.
(Figure 5) Then

A1B1‖AB and

|A1B1| = 1

2
|AB|.

In the triangle AA2B,AÂ2B = 90◦ and C1 is the mid-
point of AB. Thus

|A2C1| = 1

2
|AB|.

Thus C1B1A1A2 is an isoceles trapezoid and thus a cyclic
quadrilateral. It follows that A2 lies on the circumcircle
of A1B1C1. Similarly for the points B2 and C2 which
are the feet of the altitudes from the vertices B and C.

Figure 6:

Thus we have

Theorem 2 The feet of the altitudes of a trian-
gle ABC lie on the circumcircle of the medial triangle
A1B1C1.

Let A3 be the midpoint of the line segment AH joining
the vertex A to the orthocentre H. (Figure 6) Then
we claim that A3 belongs to C(A1B1C1), or equivalently
A1B1A3C1 is a cyclic quadrilateral.

We have C1A1‖AC and C1A3‖BH, but BH⊥AC.
Thus C1A1⊥C1A3.

Furthermore A3B1‖HC and A1B1‖AB.
But HC‖AB, thus A3B1⊥B1A1.
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Thus, quadrilateral C1A1B1A3 is cyclic, i.e. A3 ∈ C(A1B1C1).
Similarly, if B3 C3 are the midpoints of the line segments HB and HC re-
spectively then B3, C3 ∈ C(A1B1C1).

Thus we have

Theorem 3 The 3 midpoints of the line segments joining the ortho-
centre of a triangle to its vertices all lie on the circumcircle of the medial
triangle.

Thus we have the 9 points A1, B1, C1, A2, B2, C2 and A3, B3, C3 concyclic.
This circle is the ninepoint circle of the triangle ABC.

Since C1A1B1A3 is cyclic with A3C1⊥C1A1 and A3B1⊥B1A1, then A1A3

is a diameter of the ninepoint circle. Thus the centre N of the ninepoint
circle is the midpoint of the diameter A1A3. We will show in a little while
that N also lies on the Euler line and that it is the midpoint of the line
segment HO joining the orthocentre H to the circumcentre O.

Definition 1 A point A′ is the symmetric point of a point A through a third
point O if O is the midpoint of the line segment AA′. (Figure 7)

Figure 7:

We now prove a result about points lying on the circumcircle of a triangle.

Let A′ be the symmetric point of H through the point A1 which is the
midpoint of the side BC of a triangle ABC. Then we claim that A′ belongs
to C(ABC). To see this, proceed as follows.

Figure 8:

The point A1 is the midpoint of the segments
HA′ and BC so HBA′C is a parallelogram. Thus
A′C‖BH. But BH extended is perpendicular to AC



6

and so A′C⊥AC. Similarly BA′‖CH and CH is per-
pendicular to AB so BA′⊥AB. Thus

AB̂A′ = A′ĈA = 90◦.

Thus ABA′C is cyclic and furthermore AA′ is a di-
ameter. Thus

A′ ∈ C(ABC).

Similarly the other symmetric points of H through B1 and C1, which we
denote by B′ and C ′ respectively, also lie on C(ABC).

Figure 9:

Now consider the triangle AHA′. The points
A3, A1 and O are the midpoints of the sides
AH, HA′ and A′A respectively. Thus HA1OA3 is
a parallelogram so HO bisects A3A1. We saw
earlier that the segment A3A1 is a diameter of
C(A1B1C1) so the midpoint of HO is also then
the centre of C(A1B1C1). Thus the centre N of
the ninepoint circle, i.e. C(A1B1C1) lies on the
Euler line and is the midpoint of the segment
HO.

Furthermore the radius of the ninepoint circle is one half of the radius R
of the circumcircle C(ABC).

Now consider the symmetric points of H through the points A2, B2 and
C2 where again these are the feet of the perpendiculars from the vertices. We
claim these are also on C(ABC).

Figure 10:

Let BB2 and CC2 be altitudes as shown
in Figure 10, H is the point of intersec-
tion.

Then AC2HB2 is cyclic so C2ÂB2 + C2ĤB2 =
180◦.
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But BHC = C2ĤB2 so

BHC = 180◦ − C2ÂB2 which we write as

= 180◦ − Â

By construction, the triangles BHC and BA′′C are congruent, so BĤC =
BA′′C. Thus

BA′′C = 180◦ − Â,

and so ABA′′C is cyclic. Thus

A′′ ∈ C(ABC)

Similarly for B′′ and C ′′.
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Returning to the symmetric points through A1, B1 and C1 of the ortho-
centre, we can supply another proof of Theorem 1.

Theorem 1 The orthocentre H, centroid G and circumcentre O of
a triangle are collinear points.

Figure 11:

Proof In the triangle AHA′, the points O
and A1 are midpoints of sides AA′ and HA′ respec-
tively. (Figure 11) Then the line segments AA1 and
HO are medians, which intersect at the centroid G′

of 4AHA′ and furthermore

|G′H|
|G′O| = 2 =

|G′A|
|G′A1|

But AA1 is also a median of the triangle ABC so the
centroid G lies on AA1 with

|GA|
|GA1| = 2

Thus G′ coincides with G and so G lies on the line OH with

|GH|
|GO| = 2

Remark On the Euler line the points H (orthocentre), N (centre of
ninepoint circle), G (centroid) and O (circumcircle) are located as follows:

Figure 12:

with
|HN |
|NO| = 1 and

|HG|
|GO| = 2

. . .
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Figure 13:

If ABCD is a cyclic quadrilateral, the four triangles
formed by selecting 3 of the vertices are called the diag-
onal triangles. The centre of the circumcircle of ABCD
is also the circumcentre of each of the diagonal trian-
gles.

We adopt the notational convention of denoting points as-
sociated with each of these triangles by using as subscript the
vertex of the quadrilateral which is not a vertex of the diagonal
triangle. Thus HA, GA and IA will denote the orthocentre, the
centroid and the incentre respectively of the triangle BCD.
(Figure 13)

Our first result is about the quadrilateral formed by the four orthocentres.

Figure 14:

Theorem 4 Let ABCD be a cyclic quadrilateral and let
HA, HB, HC and HD denote the orthocentres of the diagonal
triangles BCD, CDA,DAB and ABC respectively. Then the
quadrilateral

HAHBHCHD

is cyclic. It is also congruent to the quadrilateral ABCD.

Proof Let M be the midpoint of CD and let
A′ and B′ denote the symmetric points through M
of the orthocentres HA and HB respectively. (Figure
14)

The lines AA′ and BB′ are diagonals of the circumcircleof ABCD so
ABB′A′ is a rectangle. Thus the sides AB and A′B′ are parallel and of same
length.

The lines HAA′ and HBB′ bisect one another so HAHBA′B′ is a parallel-
ogram so we get that HAHB is parallel to A′B′ and are of the same length.
Thus

HAHB and AB are parallel and are of the same length.
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Similarly one shows that the remaining three sides of HAHBHCHO are
parallel and of the same length of the remaining 3 sides of ABCD. The
result then follows.

The next result is useful in showing that in a cyclic quadrilateral, various
sets of 4 points associated with the diagonal triangles form cyclic quadrilat-
erals.

Figure 15:

Proposition 1 Let ABCD be a cyclic
quadrilateral and let C1, C2, C3 and C4 be circles
through the pair of points

A,B; B, C; C, D; D, A

and which intersect at points A1, B1, C1 and
D1. (Figure 15) Then A1B1C1D1 is cyclic.

Proof Let B1 be the point where cir-
cles through AB and BC meet. Similarly
for the points A1, C1 and D1. Join the
points AA1, BB1, CC1 and DD1, extend
to points Ã, B̃, C̃ and D̃. (These exten-
sions are for convenience of referring to angles
later.)

We will apply to the previous diagram the
result that if we have a cyclic quadrilateral then
an exterior angle is equal to the opposite angle
of the quadrilateral. In Figure 16, if CB is extended to B̃ then:

B̃B̂A + AB̂C = 180◦

CD̂A + AB̂C = 180◦

Thus B̃B̂C = CD̃A
. . .

In Figure 17 we apply the above result to 4 quadrilaterals.
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Figure 16:

Figure 17:

In C1CDD1

C̃Ĉ1D1 = CD̂D1

D̃D̂1C1 = C1ĈD

In BCC1B1

C̃Ĉ1B1 = CB̂B1

D̃B̂1C1 = C1ĈB

In BB1A1A

B̃B̂1A1 = BÂA1

ÃA1B1 = AB̂B1

In AA1D1D

ÃA1D1 = AD̂D1

D̃D1A1 = DÂA1

Adding up angles

C1D̂1A1 + C1B̂1A1 = C1D̂1D̃ + D̃D̂1A1 + C1B̂1B̃ + B̃B̂1A1

= C1ĈD + A1ÂD + C1ĈB + BÂA1

= C1ĈD + C1ĈB + A1ÂD + BÂA1

= BĈD + BÂD + 180◦

Similarly

D1Ĉ1B1 + D1Â1B1 = 180◦

Thus A1B1C1D1 is cyclic. ¤



12

We now apply this to orthocentres and in-
centres of the diagonal triangles.

Theorem 5 Let ABCD be a cyclic quadrilateral and let HA, HB, HC

and HD be the orthocentres of the diagonal triangles BCD, CDA,DAB and
ABC, respectively. Then HAHBHCHD is a cyclic quadrilateral.

Figure 18:

Proof In the triangle BCD, (Figure 18),

CĤAD = 180◦ − CB̂D.

In the triangle CDA, CĤBD = 180◦ −DB̂C
But

DÂC = DB̂C so

CĤAD = CĤBD

and so we conclude that CDHBHA is cyclic. Similarly, show that HBDAHC , HCABHD

and HDBCHA are cyclic.

Now apply the proposition to see that HAHBHCHD is cyclic.

Figure 19:

Theorem 6 If ABCD is a cyclic quadrilateral and
if IA, IB, IC , ID are the incentres of the diagonal triangles
BCD, CDA,DAB and ABC, respectively, then the points
IA, IB, IC and ID form a cyclic quadrilateral.
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Proof Recall that if ABC is a triangle, I is the in-
centre and P, Q,R are feet of perpendiculars from I to the
sides BC, CA and AB then

BÎC =
1

2
(RIP + PIQ)

=
1

2
(360◦ −RIQ)

=
1

2
(360◦ − 180◦ + RÂQ)

= 90◦ +
RÂQ

2
.

Now apply this to the triangles BCD and ACD. We get
(Figure 20) :

Figure 20:

CÎAD = 90◦ +
1

2
(CB̂D),

CÎBD = 90◦ +
1

2
(CÂD).

But CB̂D = CÂD so it follows that CÎAD = CÎBD. Thus IACDIB is a
cyclic quadrilateral. The proof is now completed as in previous theorem.

Theorem 7 If ABCD is a cyclic quadrilateral and GA, GB, GC and
GD are the centroids of the diagonal triangles BCD, CDA,DAB and ABC,
respectively, then the quadrilateral GAGBGCGD is similar to ABCD. Fur-

thermore, the ratio of the lengths of their corresponding circles is
1

3
.
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Proof Recall that the quadrilateral formed by the orthocentres HAHBHCHD

is congruent to ABCD.

Figure 21:

We also have the fact that all four diagonal tri-
angles have a common circumcentre which is the cen-
tre of the circle ABCD. Let this be denoted by
O.

Now join O to HA, HB, HC and HD. (Figure 21) The
centroids GA, GB, GC and GD lie on these line segments
and

|OGA|
|OHA| =

|OGB|
|OHB| =

|OGC |
|OHC | =

|OGD|
|OHD| =

1

3

Then it follows that GAGBGCGD is similar to HAHBHCHD.
The result now follows.

Finally we have

Theorem 8 Let ABCD be a cyclic quadrilateral and let A1 and C1

be the feet of the perpendiculars from A and C, respectively, to the diagonal
BD and let B1 and D1 be the feet of the projections from B and D onto the
diagonal AC. Then A1B1C1D1 is cyclic.

Proof Consider the quadrilateral BCB1C1 (Figure 22). Since

Figure 22:
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BĈ1C = BB̂1C = 90◦, then BCB1C1 is cyclic.

Similarly, A,A1, B1, B are cyclic, C,C1, D1, D are cyclic and A,A1, D,D1

are cyclic. Then by results of Proposition 1, A1B1C1D1 is cyclic.
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Figure 23:

Four Circles Theorem

If 4 circles are pairwise externally tangent, then the points
of tangency form a cyclic quadrilateral.

In Figure 23, the quadrilateral ABCD is cyclic.

Remark A similar theorem could not be true for 5 cir-
cles as 3 of the intersection points may lie on a line.

Figure 24: ABC lie along a line

Figure 25:

Proof Recall that if TK is tangent to circle at
T and O is centre of circle, then the angle between chord
TL and tangent line T is one half of angle subtended at

centre O by chord TL, i.e. KTL =
1

2
(TÔL). This

is because KT̂L = TR̂L where TR is the diameter at
T .

Draw tangent lines AA1, BB1, CC1 and DD1 at points of contact
with A1, B1, C1, D1 being points in region bounded by the circles.
Thus

BÂD + BĈD

= BÂA1 + A1ÂD + BĈC1 + C1ĈD

=
1

2
(AÔ1B + AÔ2D + BÔ3C + CÔ4D)

=
1

2
(sum of angles of quadrilateral O1O2O3O4)

= 180◦.
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Here we used the fact that the point of tangency of a pair of circles
lies on the line joining their centres.

Remark If r1, r2, r3 and r4 denote the radii of the four circles
then

O1O2 + O3O4 = r1 + r2 + r3 + r4

and O1O3 + O3O4 = r1 + r2 + r3 + r4

Thus O1O2O3O4 is a quadrilateral with the sums of the oppo-
site side lengths equal. Such a quadrilateral is called inscribable,
i.e. it has an incircle. In this situation, the circumcircle of ABCD
is the incircle of O1O2O3O4.


