
Chapter 3. Inversion and Applications to
Ptolemy and Euler
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Power of a point with respect to a circle

Figure 1:

Let A be a point and C a circle (Figure 1). If A is
outside C and T is a point of contact of a tangent from
A to C, then for any secant from A with intersection
points B1, B2 we have

|AT |2 = |AB1|.|AB2|.

This is defined to be the power of A with respect to
the circle C and denoted by

ρ(A, C) = |AT |2

Figure 2:

Furthermore, if r is the radius of C, and O its centre,
then

ρ(A, C) = |OA|2 − r2.

Now if A is interior to C, then any two chords B1B2 and C1C2 intersecting
at A (Figure 2) satisfy the property that

|B1A||AB2| = |C1A||AC2|

and if one of the chords goes through the centre O of C, this common value
can be shown to be

r2 − |OA|2
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This is defined to be the power of A with respect to C if A is interior to C.

Obviously, if A lies on the circle then ρ(A, C) = 0

Inversion

Let A be a point in the plane ?P?. Then we define a mapping

Inv : P\{A} → P\{A}
as follows. Let k be a positive, real number. Then a point B2 is the image of
a point B1 under Inv (with respect to A and radius k) if B2 lies along line
joining A to B1 and

|AB1|.|AB2| = k2

We denote this mapping as

Inv(A, k2)

Geometric Construction

To construct images of points P under inversion Inv(A, k2), one proceeds
as follows.

Figure 3:

First suppose that |AP | < k; thus P lies interior to the
circle centred at A and having radius k. Let the chord
through P and perpendicular to the line AP meet the
circle at points T1 and T2. At T1 and T2 draw 2 tangents
meeting at P ′ (Figure 3). Then

|AP ||AP ′| = k2

This can be verified by observing that the triangle AT1P
and AT1P

′ are similar.

Next suppose that |AP | > k; thus P lies outside the
circle centred at A with radius k. Now draw a circle with AP as diameter
and let it intersect the circle centred at A with radius k at the points T1 and
T2 (Figure 4). Then P ′ is the point of intersection of the lines T1T2 and AP .
To verify that |AP ′|.|AP | = k2, one again observes the triangles AP ′T1 and
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Figure 4:

APT1 are similar.

We now state some properties of inversion mappings which we will use later
in proving the theorems of Ptolemy and Euler.

Proposition 1 Let A be a point, k a positive number and Inv the mapping
Inv(A, k2). Then

(a) if A belongs to a circle C(O, r) with centre O and radius r, then

Inv(C(O, r)) is a line l which is perpendicular to OA.

(b) if l is a line which does not pass through A, then Inv(l) is a circle such
that l is perpendicular to the line joining A to the centre of the circle.

(c) if A does not belong to a circle C(O, r) then

Inv(C(O, r)) = C(O, r′)

with r′ = r
k2

ρ(A, C(O, r))

(d) if Inv(B1) = B2 and Inv(C1) = C2 where B1 and C1 are two points in
the plane, then

|B2C2| = |B1C1|. k2

|AB1||AC1|
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Remark Before discussing proofs of these properties of inversion, we
explain the concept of antiparallel lines.

Begin with a triangle ABC. Then there are two ways to choose points
D and E on the sides AB and AC so that the triangles ADE and ABC are
similar.

In one case, the line DE is parallel to the side BC (Figure 5), and in

Figure 5:

the other case, EDCB is a cyclic quadrilateral (Figure 6). We then say that

Figure 6:

the line segment DE is antiparallel to the side BC. In fact, a pair of opposite
sides in any cyclic quadrilateral are said to be antiparallel to each other.

Figure 7:

Proof of proposition

(a) Let A ∈ C(O, r), the circle with centre O
and radius r. Let B1 be a point on the other
end of the diameter of C(O, r) containing A.
Draw the line AB1 through O and let B2 be
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image of B1 under the inversion Inv(A, k2)
(Figure 7).

Then

|AB1||AB2| = k2.

Let C1 be a point of C(O, r) distinct from B1 and
let C2 = Inv(C1). Thus

|AC1|.|AC2| = k2.

From this, the triangles AC1B1 and AC2B2 are
similar and then

AB̂2C2 = AĈ1B1 = 90◦.

Thus Inv(C(O, r)) is the line through B2 and perpendicular to AO.

Figure 8:

(b) Let l be the line which does not include A (Figure 8). Drop a per-
pendicular from A to l meeting it at B2. Let B1 = Inv(B2) and we
now claim that the circle with AB1 as diameter is the image of l under
Inv. Let C2 be another point on l, and let C1 = Inv(C2). Then since
|AC1||AC2| = |AB1||AB2|, the triangles AC1B1 and AC2B2 are similar.

Thus AĈ1B1 = AB̂2C2 = 90◦, and so C1 lies on the circle with AB1 as
diameter.
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Remark: Note that if Inv(B1) = B2 and Inv(C1) = C2, then the line
segments B1C1 and B2C2 are antiparallel.

Figure 9:

We prove (d) before (c) as (c) is derived (in part) from (d).

(d) Let Inv be an inversion Inv(A, k2) for some k, and let
(Figure 9)

Inv(B1) = B2

Inv(C1) = C2

Then B1C1 is antiparallel to B2C2 and the triangles AB1C1

and AC2B2 are similar. Thus

|B2C2|
|B1C1| =

|AB2|
|AC1| =

|AB2|
|AC1| .

|AB1|
|AB1| =

k2

|AB1||AC1| ,

or |B2C2| = |B1C1| k2

|AB1||AC1|
as required.

Figure 10:

(c) Let Inv be an inversion Inv(A, k2) and let O be the centre
of a circle C(O, r) with radius r and not passing through A
(Figure 10).

Let B1 and C1 be the points on the diameter of C(O, r) lying on the
line AO and let
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B2 = Inv(B1) and C2 = Inv(C1).

Now choose a point P1 on circle C(O, r). We claim that P2 = Inv(P1) lies on
the circle with C2B2 as diameter.

Since B2P2 is antiparallel to B1P1, then

B2P̂2P1 = AB̂1P1,

and since P2C2 is antiparallel to P1C1, then

C2P̂2P1 = AĈ1P1.

Then C2P̂2B2 = P1P̂2B2 − C2P̂2P1

= AB̂1P1 − AĈ1P1

= (B1P̂1C1 + B1Ĉ1P1)−B1Ĉ1P1

= B1P̂1C1 = 90◦.

Thus P2 lies on the circle with C2B2 as diameter.

Finally, from (d) (just proved), we have

|B2C2| = |B1C1| k2

|AB1||AC1| =
k2

ρ(A, C(O, r))

But

|B2C2| = 2r′ and |B1C1| = 2r.

Thus

r′ = r.
k2

ρ(A, C(O, r))

as required.

Applications
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Figure 11:

We can use the above results to first prove Ptolemy’s theorem.

Theorem 1 Let ABCD be a cyclic quadrilateral (Figure 11).
Then

|AC||BD| = |AB||CD|+ |AD||BC|

Figure 12:

Proof We take an inversion centred on A for some k >
0.

Let B′ = Inv(B), C ′ = Inv(C) and D′ = Inv(D) be the images
(Figure 12). Since B, C and D lie on circle through A, the centre of
the inversion mapping, then B′C ′D′ are collinear, and furthermore from (d),
we have

|B′C ′| = |BC| k2

|AB|.|AC|
|C ′D′| = |CD| k2

|AC|.|AD|
|B′D′| = |BD| k2

|AB|.|AD|
But

|B′D′| = |B′C ′|+ |C ′D′| so

|BD| k2

|AB||AD| = |BC| k2

|AB||AC| + |CD| k2

|AC||AD|

Multiplying across by
|AB||AC|.|AD|

k2
, we get
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|BD||AC| = |BC||AD|+ |CD||AB|
as required. ¤

Another application is the theorem of Euler giving an expression for the
distance between the circumcentre O and the incentre I of a triangle.

Theorem 2 (Euler) Let ABC be a triangle with circumcentre O,
circumradius R, incentre I and inradius r. Then

|IO|2 = R2 − 2Rr

Figure 13:

Proof Let I denote the incentre of
the triangle ABC, let X, Y, A be the points of
contact of the incircle with the sides BC, CA
and AB respectively and, finally, let A′, B′, C ′

be the points of intersection of the lines join-
ing I to the vertices and the sides of the tri-
angle XY Z. The point A′ lies on the line seg-
ment IA and similarly for B′ and C ′ (Figure
13).

The triangle A′B′C ′ is the medial triangle of the
triangle XY Z so the circumcircle of the triangle
A′B′C ′, C(A′

1B
′C ′) is the Euler circle of the triangle XY Z. Thus, if RA′B′C′

denotes the radius of the circle C(A′
1B

′C ′), then RA′B′C′ =
r

2
where r is the radius of the incircle of the triangle ABC, i.e. the circumcircle
of XY Z.

The triangles IA′Y and IAY are similar so

|IA′|
|IY | =

|IY |
|IA|

i.e. |IY |2 = |IA′|.|IA|
or r2 = |IA′||IA|

Similarly, we can show that
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r2 = |IB′||IB| = |IC ′||IC|.
Now consider the Inversion mapping Inv = Inv(I, r2). Then Inv(C(A′B′C ′))
is a circle through ABC, i.e. C(ABC). Furthermore, from (c) above

r/2

R
=

r2

ρ(I, C(ABC))

Since I is internal to the circumcircle C(ABC) with radius R, then

ρ(I, C(ABC)) = R2 − |OI|2.
Thus

R2 − |OI|2 = 2Rr

or

|OI|2 = R2 − 2Rr

as required. ¤

Figure 14:

We get a similar result for enscribed circles.

Theorem 3 Let ABC be a triangle and let Ca be
the enscribed circle of this triangle with centre Ia, radius
ra. Then

|OIa|2 = R2 + 2Rra

where R is the radius of the circumcircle and O is its centre
(Figure 14).

Proof Let X, Y, Z be the points of contact of the
circle Ca with sides BC, AC(extended) and AB(extended)
respectively.

Let A′, B′, C ′ be points where IaA and ZY intersect, IaB
and XZ intersect, and IaC and XY intersect, respectively.
Then A′B′C ′ is the medial triangle of the triangle XY Z.
Thus if RA′B′C′ is the radius of the circumcircle of A′B′C ′, then
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RA′B′C′ =
ra

2
.

We have r2
a = |IaA||IaA

′| = |IaB||IaB
′| = |IaC||IaC

′|.
Now consider the inversion mapping Inv = Inv(Ia, r

2
a), then

Inv(C(ABC)) = C(A′B′C ′)

and so
ra/2

R
=

r2
a

ρ(Ia, C(ABC))

=
r2
a

|IaO|2 −R2

since Ia is exterior to C(ABC). Thus

2Rra = |IaO|2 −R2 or |OAa|2 = R2 + 2Rra

as required.


