2. Equilateral Triangles

Recall the well-known theorem of van Schooten.

Theorem 1 If ABC s an equilateral triangle and M s a
point on the arc BC of C(ABC') then

IMA| = |MB| + |MC]|.

Proof Use Ptolemy on the cyclic quadrilateral ABMC'.
(Figure 1)
Figure 1:
In fact, using the Ptolemy inequality for quadrilaterals, we get
the following van Schooten inequality.
Theorem 2 Let ABC' be an equilateral triangle. Then if M is any

point in the plane of ABC we have
|IMA| < |MB|+ |MC]|.

1 Pompeiu Triangle

We get the following well-known theorem of D. Pompeiu as an immediate
consequence of the previous inequality.

Theorem 3 Let M be any point in the plane of an equilateral triangle
ABC'. Then the distances |MA|,|MB| and |MC| can be the sidelengths of a

triangle.



Proof It follows immediately since
IMA| <|MB|+ |MC|

The triangle is degenerate if M lies on the arc BC of the circumcircle
C(ABCQC).

A triangle with side lengths |[MA|, |M B| and |MC)| is called a Pompeiu tri-
angle. When M is in the interior of ABC|, then the pompeiu triangle can be
explicitly constructed.

Locate N so that the triangle BN M is equilateral. Now consider
the triangles

AMB and BNC,
We have AB = BC,
BM = BN

4
and MBA=60°— MBC = CBN. cN/B
N

Thus the triangles are similar, in fact CBN is got by rotating
triangle ABM through 60° anti-clockwise in the diagram.

Figure 2:
Thus AM = CN,

and so the triangle NMC has side lengths equal to
|MA|,|MB| and |MC|. Thus NMC is the Pompeiu trian-
gle.

The measure of the angles of the Pompeiu triangle in terms of the angles
subtended at M by the vertices of ABC' and the area of the Pompeiu triangle
are given by the following result of the distinguished Romanian born Sabin
Tabirca

Theorem 4 (Tabirca) If ABC' is an equilateral triangle, and M is an
interior point of ABC, then the angles of the Pompeiu triangle and its area
are as follows:

(a) the 3 angles are the angles BMC —60°, CMA — 60° and AMB — 60°;
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(b) the area S (Pompeiu triangle) is
1 3
§(area of ABC’)—%]MOF,
where O is circumcentre of the triangle ABC'.

Proof

(a) In the triangle NMC, A
CMN =CMB-NMB
=CMB —60°, c »
CNM =CNB-MNB NN/
= CNM — 60° = AMB — 60°,
Figure 3:
and, finally, MCN = 180° — {CMN + CNM}
= 180° — {CMB — 60° + AMB — 60°}
= 300° — {360° — AMC'}
= {AMC —60°}.
Notation: The area of a triangle ABC is denoted by
S(ABC).
(b) In the diagram, NMC' is the Pompeiu triangle which we
now denote by 7;,. Then:
1 —~
S(T,) = —(|CM|.]MN|)sin(CMN)
= 5lCM||BM| sin(CMB — 60°)
1 —~ 1 —~
_ L oM BM(sin(CTTB) L — cos(CTTR). Y2
2 2\/§ 2
1 — —
= Z\CMHBM\ sin(CMB) — T‘CMHMB’COS(CMB)
1
= §S(CMB) — ?{\CM!Q + |BM|* — a*},

where a = |BC| = |CA| = |AB|.



Thus S(1,) = S(CMB) — §{|C1\4|2 + |BM|* — a?}.

Similarly we can show that

S(T,) = %S(CMA) - §{|CM]2 +[MAP — a2},

and S(T},) = %S(BMA) - §{|BM|2 +IMAJ? - a?}.

Adding, we get

35(T,) = ~S(ABC) — %g{Q(IMAP +|[MBJ? + |MCJ?) — 3a2}.

| —

Recall the Leibniz formula which states that for any triangle ABC with
centroid G and point M

1
|MA|? + |MB*+ |[MC|? = 3|MG|? + §{|AB|2 + |BC|* + |C A%}

In the case of an equilateral triangle, G = 0, the centre of the circumcircle
and a? = |AB|* = |BC|?* = |CA|* so |]\/[A|2+|MB|2+|]\4C|2 = 3|MO|*+a*.
Thus

35(T,,) = %S(ABC) - §{6|MO]2 +2a% — 302}

1
= 3S(ABC) - §6|MO|2 + gcﬂ.

Since ABC' is equilateral with side length a, S(ABC) = ?a% SO

35(T,) = SS(ABC) - ﬂ\MoP + 2S(ABO)
— S(ABC) — M|MO|2
Thus S(T,) = Z))S(ABC) — i\MOP as required.



2 Fermat-Toricelli Point

Let ABC be any triangle and on each side construct externally three equi-
lateral triangles ABC;, BC'A; and CAB;.

Then we have the following theorem.

Theorem 5

(a) The three circumcircles of the equilateral triangles in-

tersect in a point T, i.e.

C(ABCy) NC(BCA,) NC(CAB,) = {T}.

(b) The lines AAy, BBy and CCy are concurrent at T, i.e.

AA;NBB NCC, ={T}.

(c) |AA,| = |BB,| =|CCy| =|TA|+ |TB|+ |TC|.

(d) For all points M in the plane of ABC,

|MA| + |[MB| + [MC| > |AA)| = [TA| + |TB| +

TC).

i.e. the point T minimises the expression |MA|+ |MB| + |MC|.

T is called the Toricelli-Fermat point.

Proof

(a) Let {A,T} be the intersection points of the circles

C(ABC}) and C(ACB,).

Then since

Because

Thus
Thus

C1BT A is cyclic,

ATB = 180° — AC, B = 120°.

B, ATC is cyclic,

ATC = 180° — AB,C = 120°.

BTC = 120° also.
BTC + BA,C = 180°.
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Figure 4:

The point

Figure 5:



and so BA,CT is cyclic, i.e. T € C(A1BC)

(b) We claim that C, T, C are collinear points.
ATC = 120°, ATC, = ABC, = 60°

giving ATC + ATC, = 180°, ie. C,T and ()
are collinear.  Similarly A,7T,A; and B,T,B; are
collinear.

(c) We claim that |CCy| = |[TA| + |T'B| + |TC].

Since T' € C(AC,B) and AC,B is equilateral, then by
van Schooten’s theorem

ITCy| = |TA| + |TB|.

Thus |CCy| = |CT| + |TCy| = |TC| + |TA| + |TB|, as
required. Similarly for |[AA;| and |BB]|.

(d) Now let M be any point in the plane of ABC. Then,
since ABC is equilateral:

|MCy| < |MA|+|MB|

Thus |IMA|+ |[MB|+ |[MC| > |MC|+ |MC,]
> [CCh|
= |TA|+|TB|+|TC|

So the point of a triangle which minimises the sum of the distances to the
three vertices is the Toricelli-Fermat point. One could ask the question of
weighted distances to the vertices and ask which point(s) minimise weighted
sums. This is the question we now investigate.



Generalised Fermat-Toricelli Theorem

Let x,y and z be the side length of a triangle
afy with x the length of the side opposite vertex
a,y the length of the side opposite § and z the
length of the side opposite 7.

On an arbitrary triangle ABC' construct exter-
nally 3 triangles similar to a3y with vertices posi-
tioned as indicated in Figure 6.

(a) Then their circumcircles intersect at a point
T17 i.e.
C(ABCy)NC(BCA,) NC(CAB,) = {T}} G - B,

(b) The lines AA;, BB, and C'C are concurrent,
i B Y
ie.

B C
AA, N BB, NCCy = {T1) £
(c) z|AA)| = y|BBy| = z|CC|
:.Z"AT1| :y|BT1’ :Z|OT1’ 4,
Figure 6:

(d) For any point M in the plane of ABC,

z|MA|+ y|MB|+ z|MC| >

Thus the point 77 minimises the weighted distances
of a point to the vertices.

Proof The construction of the proof is sim-

ilar to the proofs in the special case when x = y = m
z.
Bl

(a) Let C(ABCy) NC(ACB;) = {A, T1}.

Figure 7:



Since AT BCY is cyclic,
ATy B = 180° — 7,

and  AT\CB; is cyclic, so
AT, C = 180° — 3.

Thus BTC = 360° — {AT\B + AT\C}
= 360° — {180° — 7 + 180° — 3
—180° — {7+ 3} = a.
Thus T1BA;C is cyclic, i.e. Ty € C(BA;C), as re-
quired.

(b) We claim that AﬁCl + AﬁC = 180° and from
this it follows that T} lies on C'CYy. In a similar way, we get that T3 also
belongs to the line segments BB; and AA;.

To show that AﬁCl + AflC = 180°, we have, since, AT;C B is cyclic,
AT,C = 180° — 3.
Also, AT\C, + ABC, = 180°, as required.

(c) Since the triangles A; BC' and a3y are similar,
then

AB| _|AC|_|BC|

z Y x

B\ 7 c

Thus |A,B| = |BC|Z,
A

and  |A4,0] = \ch%. :

Since T} € C(BCA;), then, by Ptolemy, p o

Figure 8:



TV A:].|BC| = [BTh||CAi| + |CTh||BA| B
=[BT |.|BC| 2 + 0Ty BC| =

Dividing across by |BC| and multiplying by z, we
get z|Th Ay| = y|BTy| + z|CTy|.

Thus  z|TVAi| + y|BTy| + z|CT;|

Similarly, we can show that z|T1 A|+y|T1 B|+z|T1C| =
y|BBy| = z|CC4|

(d) Now take a point M ¢ C(BCA;). Then, by the Ptolemy inequality,
[BM||CA1| 4 [CM[.|BA,| > [MA,||BC]
Proceeding as in (c) above, we get
| MA| +y|MB| + z|MC| > x|AA;| = z|T1A| + y|T1 B| + 2| T\ C|
as required.

Remarks

1. Now suppose that the positive weights x,y and z are not the sides of a
triangle, i.e. suppose

rT>y+=z
What then is the point which minimises the quantity
z|MA|+ y|MB|+ z|MC|?

where M is any point in the plane of ABC.

To decide this, consider



r|MA|+y|MB|+ z|MC| >y(|MA|+ |MB|)+ z(|[MA| + |MC), since x >y + z
> y|AB| + z|AC|
= z|AA| + y|AB| + z|AC|

Thus the point A(vertex) minimises the quantity x|MA| + y|M B| +
z|MC)|

. Suppose we take

x = sin(BAC) = sin A,
y = sin(ABC') = sin B,
z =sin(BCA) =sinC,
then the weighted expression
sin(A)|MA| + sin(B)| M B| + sin(C)|MC|

is minimised when M = O the centre of the circumcircle of ABC

~

. If we take z = sin(A),y = sin(B) and z = sin(C), then
sin(A)|MA| + sin(B)|M B| + sin(C)| M C|

is minimised when M = H, the orhthocentre.

A B C
Cfr = sin(E),y = Sin(g) and z = Sin(E)
then
A in B c
sin( )| MA| + (Z5=)| MB| + sin(5)[MC|

is minimised when M = I, the incentre.
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