2. Equilateral Triangles

Recall the well-known theorem of van Schooten.

Theorem 1 If ABC is an equilateral triangle and M is a point on the arc BC of C(ABC) then

$$|MA| = |MB| + |MC|.$$

Proof Use Ptolemy on the cyclic quadrilateral *ABMC*. (Figure 1)

Figure 1:

In fact, using the Ptolemy inequality for quadrilaterals, we get the following van Schooten inequality.

Theorem 2 Let ABC be an equilateral triangle. Then if M is any point in the plane of ABC we have

 $|MA| \le |MB| + |MC|.$

1 Pompeiu Triangle

We get the following well-known theorem of D. Pompeiu as an immediate consequence of the previous inequality.

Theorem 3 Let M be any point in the plane of an equilateral triangle ABC. Then the distances |MA|, |MB| and |MC| can be the sidelengths of a triangle.

Proof It follows immediately since

$$|MA| \le |MB| + |MC|$$

The triangle is degenerate if M lies on the arc BC of the circumcircle $\mathcal{C}(ABC)$.

A triangle with side lengths |MA|, |MB| and |MC| is called a *Pompeiu triangle*. When M is in the interior of ABC, then the pompeiu triangle can be explicitly constructed.

Locate N so that the triangle BNM is equilateral. Now consider the triangles

$$AMB \text{ and } BNC,$$

We have
$$AB = BC,$$
$$BM = BN$$
and
$$M\widehat{B}A = 60^{\circ} - M\widehat{B}C = C\widehat{B}N.$$

Thus the triangles are similar, in fact CBN is got by rotating triangle ABM through 60° anti-clockwise in the diagram.

Thus
$$AM = CN$$
,

and so the triangle NMC has side lengths equal to |MA|, |MB| and |MC|. Thus NMC is the Pompeiu triangle.

The measure of the angles of the Pompeiu triangle in terms of the angles subtended at M by the vertices of ABC and the area of the Pompeiu triangle are given by the following result of the distinguished Romanian born Sabin Tabirca

Theorem 4 (Tabirca) If ABC is an equilateral triangle, and M is an interior point of ABC, then the angles of the Pompeiu triangle and its area are as follows:

(a) the 3 angles are the angles $B\widehat{M}C - 60^{\circ}, C\widehat{M}A - 60^{\circ}$ and $A\widehat{M}B - 60^{\circ}$;

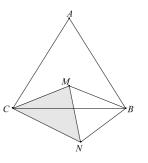


Figure 2:

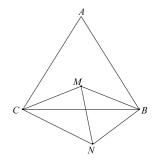
(b) the area S (Pompeiu triangle) is $\frac{1}{3}(area \text{ of } ABC) - \frac{\sqrt{3}}{4}|MO|^2,$ where O is circumcentre of the triangle ABC.

(a) In the triangle NMC,

$$\widehat{MN} = C\widehat{M}B - N\widehat{M}B \\
 = C\widehat{M}B - 60^\circ,$$

$$C\widehat{N}M = C\widehat{N}B - M\widehat{N}B$$

= $C\widehat{N}M - 60^{\circ} = A\widehat{M}B - 60^{\circ},$



and, finally,
$$\widehat{MCN} = 180^\circ - \{\widehat{CMN} + \widehat{CNM}\}\)$$

$$= 180^\circ - \{\widehat{CMB} - 60^\circ + \widehat{AMB} - 60^\circ\}\)$$
$$= 300^\circ - \{360^\circ - \widehat{AMC}\}\)$$
$$= \{\widehat{AMC} - 60^\circ\}.$$

<u>Notation:</u> The area of a triangle ABC is denoted by S(ABC).

(b) In the diagram, NMC is the Pompeiu triangle which we now denote by T_p . Then:

$$\begin{split} S(T_p) &= \frac{1}{2} (|CM|.|MN|) \sin(C\widehat{M}N) \\ &= \frac{1}{2} |CM|.|BM| \sin(C\widehat{M}B - 60^{\circ}) \\ &= \frac{1}{2} |CM|.|BM| \sin(C\widehat{M}B).\frac{1}{2} - \cos(C\widehat{M}B).\frac{\sqrt{3}}{2} \} \\ &= \frac{1}{4} |CM|.|BM| \sin(C\widehat{M}B) - \frac{\sqrt{3}}{4} |CM||MB| \cos(C\widehat{M}B) \\ &= \frac{1}{2} S(CMB) - \frac{\sqrt{3}}{8} \{|CM|^2 + |BM|^2 - a^2\}, \end{split}$$

where a = |BC| = |CA| = |AB|

Thus
$$S(T_p) = S(CMB) - \frac{\sqrt{3}}{8} \{ |CM|^2 + |BM|^2 - a^2 \}.$$

Similarly we can show that

$$S(T_p) = \frac{1}{2}S(CMA) - \frac{\sqrt{3}}{8}\{|CM|^2 + |MA|^2 - a^2\},$$

and $S(T_p) = \frac{1}{2}S(BMA) - \frac{\sqrt{3}}{8}\{|BM|^2 + |MA|^2 - a^2\}.$

Adding, we get

$$3S(T_p) = \frac{1}{2}S(ABC) - \frac{\sqrt{3}}{8} \{2(|MA|^2 + |MB|^2 + |MC|^2) - 3a^2\}.$$

Recall the Leibniz formula which states that for any triangle ABC with centroid G and point M

$$|MA|^{2} + |MB|^{2} + |MC|^{2} = 3|MG|^{2} + \frac{1}{3}\{|AB|^{2} + |BC|^{2} + |CA|^{2}\}$$

In the case of an equilateral triangle, G = 0, the centre of the circumcircle and $a^2 = |AB|^2 = |BC|^2 = |CA|^2$ so $|MA|^2 + |MB|^2 + |MC|^2 = 3|MO|^2 + a^2$. Thus

$$3S(T_p) = \frac{1}{2}S(ABC) - \frac{\sqrt{3}}{8} \{6|MO|^2 + 2a^2 - 3a^2\}$$
$$= \frac{1}{2}S(ABC) - \frac{\sqrt{3}}{8} 6|MO|^2 + \frac{\sqrt{3}}{8}a^2.$$

Since *ABC* is equilateral with side length a, $S(ABC) = \frac{\sqrt{3}}{4}a^2$, so

$$3S(T_p) = \frac{1}{2}S(ABC) - \frac{3\sqrt{3}}{4}|MO|^2 + \frac{1}{2}S(ABC)$$
$$= S(ABC) - \frac{3\sqrt{3}}{4}|MO|^2.$$

Thus $S(T_p) = \frac{1}{3}S(ABC) - \frac{3\sqrt{3}}{4}|MO|^2$, as required.

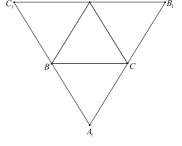
2 Fermat-Toricelli Point

Let ABC be any triangle and on each side construct externally three equilateral triangles ABC_1 , BCA_1 and CAB_1 .

Then we have the following theorem.

Theorem 5

- (a) The three circumcircles of the equilateral triangles intersect in a point T, i.e. $\mathcal{C}(ABC_1) \cap \mathcal{C}(BCA_1) \cap \mathcal{C}(CAB_1) = \{T\}.$
- (b) The lines AA_1, BB_1 and CC_1 are concurrent at T, i.e. $AA_1 \cap BB_1 \cap CC_1 = \{T\}.$
- (c) $|AA_1| = |BB_1| = |CC_1| = |TA| + |TB| + |TC|$.
- (d) For all points M in the plane of ABC, $|MA| + |MB| + |MC| \ge |AA_1| = |TA| + |TB| + |TC|.$



i.e. the point T minimises the expression |MA| + |MB| + |MC|. The point T is called the Toricelli-Fermat point.

Proof

(a) Let $\{A, T\}$ be the intersection points of the circles $\mathcal{C}(ABC_1)$ and $\mathcal{C}(ACB_1)$.

Then since C_1BTA is cyclic, $A\widehat{T}B = 180^\circ - A\widehat{C}_1B = 120^\circ.$

Because B_1ATC is cyclic, $A\hat{T}C = 180^\circ - AB_1C = 120^\circ.$

Thus $BTC = 120^{\circ}$ also. Thus $B\widehat{T}C + B\widehat{A}_1C = 180^{\circ}.$

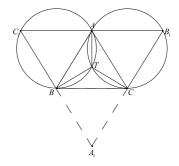


Figure 5:

and so BA_1CT is cyclic, i.e. $T \in \mathcal{C}(A_1BC)$

(b) We claim that C_1, T, C are collinear points.

$$A\widehat{T}C = 120^{\circ}, \qquad A\widehat{T}C_1 = A\widehat{B}C_1 = 60^{\circ}$$

giving $ATC + ATC_1 = 180^\circ$, i.e. C, T and C_1 are collinear. Similarly A, T, A_1 and B, T, B_1 are collinear.

(c) We claim that $|CC_1| = |TA| + |TB| + |TC|$.

Since $T \in \mathcal{C}(AC_1B)$ and AC_1B is equilateral, then by van Schooten's theorem

$$|TC_1| = |TA| + |TB|.$$

Thus $|CC_1| = |CT| + |TC_1| = |TC| + |TA| + |TB|$, as required. Similarly for $|AA_1|$ and $|BB_1|$.

(d) Now let M be any point in the plane of ABC. Then, since ABC_1 is equilateral:

$$|MC_1| \le |MA| + |MB|$$

as
$$|MA| + |MB| + |MC| \ge |MC| + |MC_1|$$

Thus

$$\begin{aligned} |B| + |MC| &\geq |MC| + |MC_1| \\ &\geq |CC_1| \\ &= |TA| + |TB| + |TC| \end{aligned}$$

So the point of a triangle which minimises the sum of the distances to the three vertices is the Toricelli-Fermat point. One could ask the question of weighted distances to the vertices and ask which point(s) minimise weighted sums. This is the question we now investigate.

Generalised Fermat-Toricelli Theorem

Let x, y and z be the side length of a triangle $\alpha\beta\gamma$ with x the length of the side opposite vertex α, y the length of the side opposite β and z the length of the side opposite γ .

On an arbitrary triangle ABC construct externally 3 triangles similar to $\alpha\beta\gamma$ with vertices positioned as indicated in Figure 6.

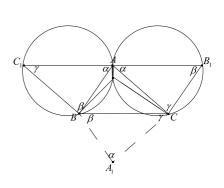
- (a) Then their circumcircles intersect at a point T_1 , i.e. $\mathcal{C}(ABC_1) \cap \mathcal{C}(BCA_1) \cap \mathcal{C}(CAB_1) = \{T_1\}$
- (b) The lines AA_1, BB_1 and CC_1 are concurrent, i.e. $AA_1 \cap BB_1 \cap CC_1 = \{T_1\}$
- (c) $x|AA_1| = y|BB_1| = z|CC_1|$ = $x|AT_1| = y|BT_1| = z|CT_1|$
- (d) For any point M in the plane of ABC,

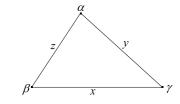
$$x|MA| + y|MB| + z|MC| \ge x|AA_1| = x|AT_1| + y|BT_1| + z|CT_1|$$

Thus the point T_1 minimises the weighted distances of a point to the vertices.

Proof The construction of the proof is similar to the proofs in the special case when x = y = z.

(a) Let $\mathcal{C}(ABC_1) \cap \mathcal{C}(ACB_1) = \{A, T_1\}.$





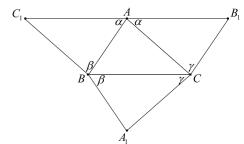


Figure 6:

Since
$$AT_1BC_1$$
 is cyclic,
 $A\widehat{T}_1B = 180^\circ - \widehat{\gamma}$,
and AT_1CB_1 is cyclic, so
 $A\widehat{T}_1C = 180^\circ - \widehat{\beta}$.
Thus $B\widehat{T}_1C = 360^\circ - \{A\widehat{T}_1B + A\widehat{T}_1C\}$
 $= 360^\circ - \{180^\circ - \widehat{\gamma} + 180^\circ - \widehat{\beta}$
 $= 180^\circ - \{\widehat{\gamma} + \widehat{\beta}\} = \widehat{\alpha}$.

Thus T_1BA_1C is cyclic, i.e. $T_1 \in \mathcal{C}(BA_1C)$, as required.

(b) We claim that $A\hat{T}_1C_1 + A\hat{T}_1C = 180^\circ$ and from this it follows that T_1 lies on CC_1 . In a similar way, we get that T_1 also belongs to the line segments BB_1 and AA_1 .

To show that $A\hat{T}_1C_1 + A\hat{T}_1C = 180^\circ$, we have, since, AT_1CB_1 is cyclic, $AT_1C = 180^\circ - \hat{\beta}.$

Also, $A\hat{T}_1C_1 + A\hat{B}C_1 = 180^\circ$, as required.

(c) Since the triangles A_1BC and $\alpha\beta\gamma$ are similar, then

$$\frac{|A_1B|}{z} = \frac{|A_1C|}{y} = \frac{|BC|}{x}$$

Thus $|A_1B| = |BC|\frac{z}{x},$

and
$$|A_1C| = |BC|\frac{y}{x}$$
.

Since $T_1 \in \mathcal{C}(BCA_1)$, then, by Ptolemy,

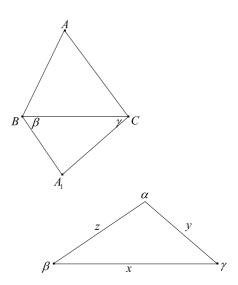


Figure 8:

$$|T_1A_1| |BC| = |BT_1| |CA_1| + |CT_1| |BA_1| = |BT_1| |BC| \frac{y}{x} + |CT_1| |BC| \frac{z}{x}$$

Dividing across by |BC| and multiplying by x, we get $x|T_1A_1| = y|BT_1| + z|CT_1|$.

Thus
$$x|T_1A_1| + y|BT_1| + z|CT_1|$$

= $x|T_1A| + x|T_1A_1| = x|AA_1|.$

Similarly, we can show that $x|T_1A|+y|T_1B|+z|T_1C|=y|BB_1|=z|CC_1|$

(d) Now take a point $M \notin \mathcal{C}(BCA_1)$. Then, by the Ptolemy inequality,

$$|BM||CA_1| + |CM|.|BA_1| > |MA_1||BC|$$

Proceeding as in (c) above, we get

$$x|MA| + y|MB| + z|MC| > x|AA_1| = x|T_1A| + y|T_1B| + z|T_1C|$$

as required.

<u>Remarks</u>

1. Now suppose that the positive weights x, y and z are not the sides of a triangle, i.e. suppose

$$x \ge y + z$$

What then is the point which minimises the quantity

$$x|MA| + y|MB| + z|MC|?$$

where M is any point in the plane of ABC. To decide this, consider

$$\begin{aligned} x|MA| + y|MB| + z|MC| &\geq y(|MA| + |MB|) + z(|MA| + |MC|), \text{ since } x \geq y + z \\ &\geq y|AB| + z|AC| \\ &= x|AA| + y|AB| + z|AC| \end{aligned}$$

Thus the point A(vertex) minimises the quantity x|MA| + y|MB| + z|MC|

2. Suppose we take

$$x = \sin(B\widehat{A}C) = \sin\widehat{A},$$

$$y = \sin(A\widehat{B}C) = \sin\widehat{B},$$

$$z = \sin(B\widehat{C}A) = \sin\widehat{C},$$

then the weighted expression

$$\sin(\widehat{A})|MA| + \sin(\widehat{B})|MB| + \sin(\widehat{C})|MC|$$

is minimised when M = O the centre of the circumcircle of ABC

3. If we take $x = \sin(\widehat{A}), y = \sin(\widehat{B})$ and $z = \sin(\widehat{C})$, then

$$\sin(\widehat{A})|MA| + \sin(\widehat{B})|MB| + \sin(\widehat{C})|MC|$$

is minimised when M = H, the orthhocentre.

4. If $x = \sin(\frac{\widehat{A}}{2}), y = \sin(\frac{\widehat{B}}{2})$ and $z = \sin(\frac{\widehat{C}}{2})$ then

$$\sin(\frac{\widehat{A}}{2})|MA| + (\frac{\sin\widehat{B}}{2})|MB| + \sin(\frac{\widehat{C}}{2})|MC|$$

is minimised when M = I, the incentre.