
2. Equilateral Triangles

Figure 1:

Recall the well-known theorem of van Schooten.

Theorem 1 If ABC is an equilateral triangle and M is a
point on the arc BC of C(ABC) then

|MA| = |MB|+ |MC|.
Proof Use Ptolemy on the cyclic quadrilateral ABMC.
(Figure 1)

In fact, using the Ptolemy inequality for quadrilaterals, we get
the following van Schooten inequality.

Theorem 2 Let ABC be an equilateral triangle. Then if M is any
point in the plane of ABC we have

|MA| ≤ |MB|+ |MC|.

1 Pompeiu Triangle

We get the following well-known theorem of D. Pompeiu as an immediate
consequence of the previous inequality.

Theorem 3 Let M be any point in the plane of an equilateral triangle
ABC. Then the distances |MA|, |MB| and |MC| can be the sidelengths of a
triangle.
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Proof It follows immediately since

|MA| ≤ |MB|+ |MC|
The triangle is degenerate if M lies on the arc BC of the circumcircle

C(ABC).

A triangle with side lengths |MA|, |MB| and |MC| is called a Pompeiu tri-
angle. When M is in the interior of ABC, then the pompeiu triangle can be
explicitly constructed.

Figure 2:

Locate N so that the triangle BNM is equilateral. Now consider
the triangles

AMB and BNC,

We have AB = BC,

BM = BN

and MB̂A = 60◦ −MB̂C = CB̂N.

Thus the triangles are similar, in fact CBN is got by rotating
triangle ABM through 60◦ anti-clockwise in the diagram.

Thus AM = CN,

and so the triangle NMC has side lengths equal to
|MA|, |MB| and |MC|. Thus NMC is the Pompeiu trian-
gle.

The measure of the angles of the Pompeiu triangle in terms of the angles
subtended at M by the vertices of ABC and the area of the Pompeiu triangle
are given by the following result of the distinguished Romanian born Sabin
Tabirca

Theorem 4 (Tabirca) If ABC is an equilateral triangle, and M is an
interior point of ABC, then the angles of the Pompeiu triangle and its area
are as follows:

(a) the 3 angles are the angles BM̂C − 60◦, CM̂A− 60◦ and AM̂B − 60◦;
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(b) the area S (Pompeiu triangle) is
1

3
(area of ABC)−

√
3

4
|MO|2,

where O is circumcentre of the triangle ABC.

Figure 3:

Proof

(a) In the triangle NMC,

CM̂N = CM̂B −NM̂B

= CM̂B − 60◦,

CN̂M = CN̂B −MN̂B

= CN̂M − 60◦ = AM̂B − 60◦,

and, finally, MĈN = 180◦ − {CM̂N + CN̂M}
= 180◦ − {CM̂B − 60◦ + AM̂B − 60◦}
= 300◦ − {360◦ − AM̂C}
= {AM̂C − 60◦}.

Notation: The area of a triangle ABC is denoted by
S(ABC).

(b) In the diagram, NMC is the Pompeiu triangle which we
now denote by Tp. Then:

S(Tp) =
1

2
(|CM |.|MN |) sin(CM̂N)

=
1

2
|CM |.|BM | sin(CM̂B − 60◦)

=
1

2
|CM |.|BM |{sin(CM̂B).

1

2
− cos(CM̂B).

√
3

2
}

=
1

4
|CM |.|BM | sin(CM̂B)−

√
3

4
|CM ||MB| cos(CM̂B)

=
1

2
S(CMB)−

√
3

8
{|CM |2 + |BM |2 − a2},

where a = |BC| = |CA| = |AB|.
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Thus S(Tp) = S(CMB)−
√

3

8
{|CM |2 + |BM |2 − a2}.

Similarly we can show that

S(Tp) =
1

2
S(CMA)−

√
3

8
{|CM |2 + |MA|2 − a2},

and S(Tp) =
1

2
S(BMA)−

√
3

8
{|BM |2 + |MA|2 − a2}.

Adding, we get

3S(Tp) =
1

2
S(ABC)−

√
3

8
{2(|MA|2 + |MB|2 + |MC|2)− 3a2}.

Recall the Leibniz formula which states that for any triangle ABC with
centroid G and point M

|MA|2 + |MB|2 + |MC|2 = 3|MG|2 +
1

3
{|AB|2 + |BC|2 + |CA|2}

In the case of an equilateral triangle, G = 0, the centre of the circumcircle
and a2 = |AB|2 = |BC|2 = |CA|2 so |MA|2+ |MB|2+ |MC|2 = 3|MO|2+a2.
Thus

3S(Tp) =
1

2
S(ABC)−

√
3

8
{6|MO|2 + 2a2 − 3a2}

=
1

2
S(ABC)−

√
3

8
6|MO|2 +

√
3

8
a2.

Since ABC is equilateral with side length a, S(ABC) =

√
3

4
a2, so

3S(Tp) =
1

2
S(ABC)− 3

√
3

4
|MO|2 +

1

2
S(ABC)

= S(ABC)− 3
√

3

4
|MO|2.

Thus S(Tp) =
1

3
S(ABC)− 3

√
3

4
|MO|2, as required.
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2 Fermat-Toricelli Point

Let ABC be any triangle and on each side construct externally three equi-
lateral triangles ABC1, BCA1 and CAB1.

Figure 4:

Then we have the following theorem.

Theorem 5

(a) The three circumcircles of the equilateral triangles in-
tersect in a point T , i.e.
C(ABC1) ∩ C(BCA1) ∩ C(CAB1) = {T}.

(b) The lines AA1, BB1 and CC1 are concurrent at T , i.e.
AA1 ∩BB1 ∩ CC1 = {T}.

(c) |AA1| = |BB1| = |CC1| = |TA|+ |TB|+ |TC|.
(d) For all points M in the plane of ABC,

|MA| + |MB| + |MC| ≥ |AA1| = |TA| + |TB| +
|TC|.

i.e. the point T minimises the expression |MA|+ |MB| + |MC|. The point
T is called the Toricelli-Fermat point.

Figure 5:

Proof

(a) Let {A, T} be the intersection points of the circles
C(ABC1) and C(ACB1).

Then since C1BTA is cyclic,

AT̂B = 180◦ − AĈ1B = 120◦.

Because B1ATC is cyclic,

AT̂C = 180◦ − AB1C = 120◦.

Thus BTC = 120◦ also.

Thus BT̂C + BÂ1C = 180◦.
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and so BA1CT is cyclic, i.e. T ∈ C(A1BC)

(b) We claim that C1, T, C are collinear points.

AT̂C = 120◦, AT̂C1 = AB̂C1 = 60◦

giving ATC + ATC1 = 180◦, i.e. C, T and C1

are collinear. Similarly A, T,A1 and B, T,B1 are
collinear.

(c) We claim that |CC1| = |TA|+ |TB|+ |TC|.

Since T ∈ C(AC1B) and AC1B is equilateral, then by
van Schooten’s theorem

|TC1| = |TA|+ |TB|.

Thus |CC1| = |CT | + |TC1| = |TC| + |TA| + |TB|, as
required. Similarly for |AA1| and |BB1|.

(d) Now let M be any point in the plane of ABC. Then,
since ABC1 is equilateral:

|MC1| ≤ |MA|+ |MB|

Thus |MA|+ |MB|+ |MC| ≥ |MC|+ |MC1|
≥ |CC1|
= |TA|+ |TB|+ |TC|

So the point of a triangle which minimises the sum of the distances to the
three vertices is the Toricelli-Fermat point. One could ask the question of
weighted distances to the vertices and ask which point(s) minimise weighted
sums. This is the question we now investigate.
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Generalised Fermat-Toricelli Theorem

Figure 6:

Let x, y and z be the side length of a triangle
αβγ with x the length of the side opposite vertex
α, y the length of the side opposite β and z the
length of the side opposite γ.

On an arbitrary triangle ABC construct exter-
nally 3 triangles similar to αβγ with vertices posi-
tioned as indicated in Figure 6.

(a) Then their circumcircles intersect at a point
T1, i.e.
C(ABC1) ∩ C(BCA1) ∩ C(CAB1) = {T1}

(b) The lines AA1, BB1 and CC1 are concurrent,
i.e.
AA1 ∩BB1 ∩ CC1 = {T1}

(c) x|AA1| = y|BB1| = z|CC1|
= x|AT1| = y|BT1| = z|CT1|

(d) For any point M in the plane of ABC,

x|MA|+ y|MB|+ z|MC| ≥
x|AA1| = x|AT1|+ y|BT1|+ z|CT1|

Thus the point T1 minimises the weighted distances
of a point to the vertices.

Figure 7:

Proof The construction of the proof is sim-
ilar to the proofs in the special case when x = y =
z.

(a) Let C(ABC1) ∩ C(ACB1) = {A, T1}.
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Since AT1BC1 is cyclic,

AT̂1B = 180◦ − γ̂,

and AT1CB1 is cyclic, so

AT̂1C = 180◦ − β̂.

Thus BT̂1C = 360◦ − {AT̂1B + AT̂1C}
= 360◦ − {180◦ − γ̂ + 180◦ − β̂

= 180◦ − {γ̂ + β̂} = α̂.

Thus T1BA1C is cyclic, i.e. T1 ∈ C(BA1C), as re-
quired.

(b) We claim that AT̂1C1 + AT̂1C = 180◦ and from
this it follows that T1 lies on CC1. In a similar way, we get that T1 also
belongs to the line segments BB1 and AA1.

To show that AT̂1C1 + AT̂1C = 180◦, we have, since, AT1CB1 is cyclic,

AT1C = 180◦ − β̂.

Figure 8:

Also, AT̂1C1 + AB̂C1 = 180◦, as required.

(c) Since the triangles A1BC and αβγ are similar,
then

|A1B|
z

=
|A1C|

y
=
|BC|

x
.

Thus |A1B| = |BC|z
x

,

and |A1C| = |BC|y
x

.

Since T1 ∈ C(BCA1), then, by Ptolemy,
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|T1A1|.|BC| = |BT1||CA1|+ |CT1||BA1|
=|BT1|.|BC| y

x
+ |CT1||BC| z

x

Dividing across by |BC| and multiplying by x, we
get x|T1A1| = y|BT1|+ z|CT1|.

Thus x|T1A1|+ y|BT1|+ z|CT1|
= x|T1A|+ x|T1A1| = x|AA1|.

Similarly, we can show that x|T1A|+y|T1B|+z|T1C| =
y|BB1| = z|CC1|

(d) Now take a point M 6∈ C(BCA1). Then, by the Ptolemy inequality,

|BM ||CA1|+ |CM |.|BA1| > |MA1||BC|

Proceeding as in (c) above, we get

x|MA|+ y|MB|+ z|MC| > x|AA1| = x|T1A|+ y|T1B|+ z|T1C|

as required.

Remarks

1. Now suppose that the positive weights x, y and z are not the sides of a
triangle, i.e. suppose

x ≥ y + z

What then is the point which minimises the quantity

x|MA|+ y|MB|+ z|MC|?

where M is any point in the plane of ABC.

To decide this, consider
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x|MA|+ y|MB|+ z|MC| ≥ y(|MA|+ |MB|) + z(|MA|+ |MC|), since x ≥ y + z
≥ y|AB|+ z|AC|
= x|AA|+ y|AB|+ z|AC|

Thus the point A(vertex) minimises the quantity x|MA| + y|MB| +
z|MC|

2. Suppose we take

x = sin(BÂC) = sin Â,

y = sin(AB̂C) = sin B̂,

z = sin(BĈA) = sin Ĉ,

then the weighted expression

sin(Â)|MA|+ sin(B̂)|MB|+ sin(Ĉ)|MC|

is minimised when M = O the centre of the circumcircle of ABC

3. If we take x = sin(Â), y = sin(B̂) and z = sin(Ĉ), then

sin(Â)|MA|+ sin(B̂)|MB|+ sin(Ĉ)|MC|

is minimised when M = H, the orhthocentre.

4. If x = sin(
Â

2
), y = sin(

B̂

2
) and z = sin(

Ĉ

2
)

then

sin(
Â

2
)|MA|+ (

sin B̂

2
)|MB|+ sin(

Ĉ

2
)|MC|

is minimised when M = I, the incentre.
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